Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-15T09:22:13.561Z Has data issue: false hasContentIssue false

State and Location of Water Adsorbed on Clay Minerals: Consequences of the Hydration and Swelling-Shrinkage Phenomena

Published online by Cambridge University Press:  28 February 2024

R. Prost
Affiliation:
Station de Science du Sol, INRA, Route de Saint-Cyr, 78000 Versailles, France
T. Koutit
Affiliation:
Station de Science du Sol, INRA, Route de Saint-Cyr, 78000 Versailles, France
A. Benchara
Affiliation:
Station de Science du Sol, INRA, Route de Saint-Cyr, 78000 Versailles, France
E. Huard
Affiliation:
Station de Science du Sol, INRA, Route de Saint-Cyr, 78000 Versailles, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The application of the Frenkel-Halsey-Hill (FHH) formalism to the water desorption isotherms obtained for the whole range of the activity of water with the pressure membrane device (0.98 < aw < 1) and with the desiccator (0 < aw < 0.98) gives information concerning the nature and the relative importance of the 2 mechanisms involved in the dehydration—hydration processes: adsorption and capillary condensation. The state and location of water are described in each domain. An equation that gives the thickness t of the film of water adsorbed on the walls of pores versus the activity of water is developed. This t-curve is used to get, from the desorption isotherm, the pore size distribution curve of the studied hydrated materials. Then concepts of surface and fabric of clay pastes are discussed as a function of hydration and a mechanism is proposed to explain swelling and shrinkage of finely divided materials. Three kinds of surfaces, related to the aggregate fabric, are defined as a function of their capacity to adsorb water. Each kind of surface is determined by a specific technique: the total surface area (St) by ethylene glycol adsorption, the external surface area of particles (Ss) by nitrogen adsorption and the external surface area of aggregates (Se) by hydraulic conductivity measurements. As a consequence it is only with completely dispersed clays that swelling is a function of St. With unwell-dispersed clays, water adsorption, which induces swelling, successively occurs on St, Ss and Se surfaces.

Type
Research Article
Copyright
Copyright © 1998, The Clay Minerals Society

References

Adkins, B.D. Reucroft, P.J. and Davis, B.H., 1986 The FHH multilayer expression: Effects of particle size Adsorption Sci Technol 3 123140 10.1177/026361748600300302.CrossRefGoogle Scholar
Bank, S. Bank, J.E. and Ellis, P.D., 1989 Solid-state 113Cd nuclear magnetic resonance study of exchanged montmorillonites J Phys Chem 93 48474855 10.1021/j100349a034.CrossRefGoogle Scholar
Bank, S. Bank, J.F. Marchetti, P. and Ellis, P.D., 1989 Solid-state cadmium-113 nuclear magnetic resonance study of cadmium speciation in environmentally contaminated sediments J Environ Qual 18 2530 10.2134/jeq1989.00472425001800010004x.CrossRefGoogle Scholar
Benchara, A., 1991 Etats et localisation de l’eau retenue par des matériaux finement divisés: Mécanismes de l’hydratation et du gonflement Paris, France Univ Paris 7.Google Scholar
Bourrie, G. and Pedro, G., 1979 La notion de pF, sa signification physico-chimique et ses implications pédogénétiques. 1— Signification physicochimique—relation entre le pF et l’activité de l’eau Sci Sol 4 313322.Google Scholar
Calvet, R. and Prost, R., 1971 Cation migration into empty octahedral sites and surface properties of clays Clays Clay Miner 19 175186 10.1346/CCMN.1971.0190306.CrossRefGoogle Scholar
Carrott, P.J.M. McLeod, A.I. Sing, K.S.W., Rouquerol, J. and Sing, K.S.W., 1982 Application of the Frenkel-Halsey-Hill equation to multilayer isotherms of nitrogen on oxides at 77 K Proc Int Symp on Adsorption at the Gas-Solid and Liquid-Solid Interface Amsterdam Elsevier 403410 10.1016/S0167-2991(09)61357-4.Google Scholar
Derjaguin, B.V. Churaev, N.V. and Muller, V.M., 1987 Surface forces New York Plenum Publ 10.1007/978-1-4757-6639-4.CrossRefGoogle Scholar
Eisenberg, D. and Kauzmann, W., 1969 The structure and properties of water Oxford, UK Clarendon Pr..Google Scholar
Frenkel, J., 1946 Kinetic theory of liquids London, UK Oxford Univ Pr..Google Scholar
Fripiat, J.J. Cases, J.M. Francois, M. and Letellier, M., 1982 Thermodynamic and microdynamic behavior of water in clay suspensions and gels J Colloid Interface Sci 89 378400 10.1016/0021-9797(82)90191-6.CrossRefGoogle Scholar
Hagymassy, J. Brunauer, S. and Mikhail, R.S.H., 1969 Pore structure analysis by water vapor adsorption. I. t-curves for water vapor J Colloid Interface Sci 29 3 485491 10.1016/0021-9797(69)90132-5.CrossRefGoogle Scholar
Haines, W.B., 1923 The volume changes associated with variation of water content in soil J Agric Sei 13 296310 10.1017/S0021859600003580.CrossRefGoogle Scholar
Halsey, G., 1948 Physical adsorption on non-uniform surfaces J Chem Phys 16 10 931937 10.1063/1.1746689.CrossRefGoogle Scholar
Hill, T.L., 1952 Theory of physical adsorption Adv Catalysis 4 212258.Google Scholar
Jurinak, J.J., 1963 Multilayer adsorption of water by kaolinite Soil Sci Soc Proc 27 269272 10.2136/sssaj1963.03615995002700030017x.CrossRefGoogle Scholar
Koutit, T., 1989 Mécanismes de l’hydratation des argiles. Etude de l’état et de la localisation de l’eau adsorbée Rabat, Maroc Univ of Rabat..Google Scholar
Lambert, J.F. Prost, R. and Smith, M.E., 1992 39K solid-state NMR studies of potassium tecto- and phyllosilicates: the in situ detection of hydratable K+ in smectites Clays Clay Miner 40 3 253261 10.1346/CCMN.1992.0400301.CrossRefGoogle Scholar
Laperche, V., 1991 Etude de l’état et de la localisation des cations compensateurs dans les phyllosilicates par des méthodes spectrométriques Paris, France Univ Paris VII..Google Scholar
Laperche, V. Lambert, J.F. Prost, R. and Fripiat, J.J., 1990 High-resolution solid-state NMR of exchangeable cations in the in-terlayer surface of a swelling mica: 23Na-, 111Cd- and 133Cs-vermiculites J Phys Chem 94 25 88218831 10.1021/j100388a015.CrossRefGoogle Scholar
Low, P.F., 1979 Nature and properties of water in montmoril-lonite—water systems Soil Sci Soc Am J 43 651658 10.2136/sssaj1979.03615995004300040005x.CrossRefGoogle Scholar
Low, P.F., 1980 The swelling of clay: II. Montmorillonites Soil Sci Soc Am J 44 667676 10.2136/sssaj1980.03615995004400040001x.CrossRefGoogle Scholar
Luck, W.A.P., 1973 Infrared studies of hydrogen bonding in pure liquids and solutions Water: A comprehensive treatise. Water in crystalline hydrates. Aqueous solution of simple nonelectrolytes 2 235321.Google Scholar
Mulla, D.J. and Low, P.F., 1983 The molar absorptivity of interpar-ticle water in clay—water systems J Colloid Interface Sci 95 1 5160 10.1016/0021-9797(83)90071-1.CrossRefGoogle Scholar
Norrish, K., 1954 The swelling of montmorillonite Disc Faraday Soc 18 120134 10.1039/df9541800120.CrossRefGoogle Scholar
Parker, J.C. and Sparks, D.L., 1986 Hydrostatics of water in porous media Soil physical chemistry Boca Raton, FL CRC Pr. 209296.Google Scholar
Pierce, C., 1953 Computation of pore size from physical adsorption data J Phys Chem 57 149152 10.1021/j150503a005.CrossRefGoogle Scholar
Pierce, C., 1960 The Frenkel-Halsey-Hill adsorption isotherm and capillary condensation J Phys Chem 64 11841187 10.1021/j100838a018.CrossRefGoogle Scholar
Prost, R., 1975 tude de l’hydratation des argiles: Interactions eau-minéral et mécanisme de la rétention de l’eau. I: Etude d’une zéolite (natrolite) et de deux minéraux fibreux (attapulgite et sépiolite) Ann Agron 26 4 400462.Google Scholar
Prost, R., 1975 Etude de l’hydratation des argiles: Interactions eau-minéral et mécanisme de la rétention de l’eau. II: Etude d’une smectite (hectorite) Ann Agron 26 5 463535.Google Scholar
Prost, R. and Bailey, S.W., 1975 Interactions between adsorbed water molecules and the structure of clay minerals: Hydration mechanism of smectites Proc Int Clay Conf Wilmette, IL Applied Publ 351359.Google Scholar
Prost, R., Olphen, A. and Veniale, F., 1982 Near infrared properties of water in Na-hec-torite pastes Proc Int Clay Conf New York Elsevier 187195.Google Scholar
Prost, R. and Decarreau, A., 1990 Relations eau-argile: Structure et gonflement des matériaux argileux Matériaux argileux Paris, France Société Française de Minéralogie et de Cristallographie 345386.Google Scholar
Sposito, G., 1972 Thermodynamics of swelling clay-water systems Soil Sci 114 243249 10.1097/00010694-197210000-00001.CrossRefGoogle Scholar
Sposito, G., 1981 The thermodynamics of soil solutions Oxford Clarendon Pr. 187208.Google Scholar
Sposito, G. and Prost, R., 1982 Structure of water adsorbed on smectites Chemical Reviews 82 6 553573 10.1021/cr00052a001.CrossRefGoogle Scholar
Suquet, H. Prost, R. and Pezerat, H., 1977 Etude par spectroscopie infrarouge de l’eau adsorbée par la saponite-calcium Clay Miner 12 113126 10.1180/claymin.1977.012.02.02.CrossRefGoogle Scholar
Tessier, D., 1984 Etude expérimentale de l’organisation des matériaux argileux Hydratation, gonflement et structuration au cours de la dessiccation et de la réhumectation Paris, France Univ of Paris VII.Google Scholar
Tinet, D. Faugere, A.M. and Prost, R., 1991 113Cd NMR chemical shift tensor analysis of cadmium-exchanged clays and clay gels J Phys Chem 95 22 88048807 10.1021/j100175a070.CrossRefGoogle Scholar
Weiss, C.A. Jr Kirkpatrick, R.J. and Altaner, S.P., 1990 Variations in interlayer cation sites of clay minerals as studied by 133Cs MAS nuclear magnetic resonance spectroscopy Am Mineral 75 970982.Google Scholar
Weiss, C.A. Jr Kirkpatrick, R.J. and Altaner, S.P., 1990 The structural environments of cations adsorbed onto clays: 133Cs variable-temperature MAS NMR spectroscopic study of hectorite Geochim Cosmochim Acta 54 16551669 10.1016/0016-7037(90)90398-5.CrossRefGoogle Scholar