Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T07:41:30.988Z Has data issue: false hasContentIssue false

Stacking Order in a K/Mg Interstratified Vermiculite from Malawi

Published online by Cambridge University Press:  28 February 2024

C. de la Calle
Affiliation:
Instituto de Ciencia de Materiales, Sede D, C.S.I.C., c) Serrano 113, 28006 Madrid, Spain
J. L. Martin de Vidales
Affiliation:
Departamento de Quimica Agricola, Facultad de Ciencias, Universidad Autonoma de Madrid, 28049 Madrid, Spain
C. H. Pons
Affiliation:
CRMD CNRS-Université d'Orléans (UM 0131), U.F.R. Sciences, Rue de Chartres BP 6759, 45067 Orléans Cedex 2, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The stacking order of a bi-ionic K/Mg vermiculite from Malawi (Nyasaland), has been determined from Weissenberg data. The sample corresponds to a K/Mg interstratified vermiculite containing 50% K layers (dK = 1.01 nm) and 50% Mg layers with two layers of water (dMg = 1.44 nm). The observed intensities along (0, 0), (h, 0), (0, k) and (1, k) reciprocal rods were compared to the calculated intensities given by model defect structures. It was found that: 1) The (h, 0), (0, k) and (1, k) rods reveal the interstratification phenomenon which was previously observed on the (0, 0) rod; 2) The exchange of Mg by K does not occur randomly in a single interlayer, but occurs in interlayer domains sufficiently extensive to allow the reorganisation of the layer stacking and development of the ordered K-vermiculite structure from the semi-ordered structure characteristic of magnesium vermiculites; 3) For this sample, the interlayer water of the Mg phase occurs in two coexisting configurations; one configuration has water molecules forming octahedral coordination around the Mg2+, the other has water which is not linked to the Mg2+ cation forming two planes.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

References

Barshad, I., 1949 The nature of lattice expansion and its relation to hydration in montmorillonite and vermiculite Amer. Mineral. 34 675684.Google Scholar
Boettcher, A. L., 1966 Vermiculite, hydrobiotite and bio-tite in the Rainy Creek igneous complex near Liby, Montana Clay Miner. 6 283296 10.1180/claymin.1966.006.4.03.CrossRefGoogle Scholar
Bradley, W. F., Serratosa, J. M. and Swineford, A., 1960 A discussion of the water content of vermiculite Clays and Clay Minerals Proc. 7th Natl. Conf., Washington, D.C., 1958 New York Pergamon Press 260270.Google Scholar
Brindley, G. W. and Gillery, F. M., 1956 X-ray identification of chlorite species Amer. Mineral. 41 169181.Google Scholar
Brindley, G. W. and Robinson, K., 1946 Randomness in structures of kaolinitic clay minerals Trans. Faraday Soc. 42B 198205 10.1039/tf946420b198.CrossRefGoogle Scholar
Brindley, G. W. and Robinson, K., 1947 X-ray study of some kaolinitic fireclay Trans. Br. Ceram. Soc. 46 4962.Google Scholar
de la Calle, C., (1977) Structure des vermiculites. Facteurs conditionnant les mouvements des feuillets: Ph.D. thesis, Université de Paris VI, France.Google Scholar
de la Calle, C., and Suquet, H., (1988) Vermiculite: in Reviews in Mineralogy, Vol. 19, Hydrous Phyllosilicates, Bailey, S. W., ed., Mineralogical Society of America, 455496.CrossRefGoogle Scholar
de la Calle, C., Suquet, H., Dubernat, J. and Pezerat, H., 1978 Mode d’empilement des feuillets dans les vermiculites hydratees a deux couches Clay Minerals 13 275297 10.1180/claymin.1978.013.3.04.CrossRefGoogle Scholar
de la Calle, C., Suquet, H., Dubernat, J., Pezerat, H., Gaultier, J. P., Mamy, J. and Bailey, S. W., 1975a Crystal structure of two Mg-vermiculites and Na-, Ca-vermiculites Proc. Int. Clay Conf., Mexico City, 1975 Wilmette, Illinois Applied Publishing 201209.Google Scholar
de la Calle, C., Suquet, H. and Pezerat, H., 1975b Glissement des feuillets accompagnant certaines echanges catio-niques dans les monocristaux de vermiculites Bull. Groupe franç. Argiles 27 3149 10.3406/argil.1975.1235.CrossRefGoogle Scholar
de la Calle, C., Suquet, H. and Pezerat, H., 1985 Vermiculites hydratées a une couche Clay Miner. 20 221230 10.1180/claymin.1985.020.2.06.CrossRefGoogle Scholar
de la Calle, C., Suquet, H. and Pons, C. H., 1988 Stacking order in a 14.30 Å Mg-vermiculite Clays & Clay Minerals 36 481490 10.1346/CCMN.1988.0360601.CrossRefGoogle Scholar
Guinier, A., 1964 Théorie et technique de la radiocristal-lographie Paris Dunod 490663.Google Scholar
Hendricks, S. B. and Teller, E., 1942 X-ray interference in partially ordered layer lattices Jour. Chem. Phys. 10 147 67 10.1063/1.1723678.Google Scholar
Kakinoki, J. and Komura, Y., 1952 Intensity of X-Ray diffraction by one-dimensionally disordered crystal Jour. Phys. Soc. Japan 7 3035 10.1143/JPSJ.7.30.CrossRefGoogle Scholar
Maire, J. and Mering, J., 1970 Graphitization of soft carbons Chem. Phys. Carbon 6 125139.Google Scholar
Mamy, J., (1968) Recherche sur l’hydratation de la montmorillonite: propriétés diélectriques et structure du film d’eau: Ph.D. thesis, Université de Paris, France.Google Scholar
Martin de Vidales, J. L., Vila, E., Ruiz-Amil, A., de la Calle, C. and Pons, C. H., 1990 Interstratification in Malawi vermiculite: Effect of bi-ionic K-Mg solutions Clays & Clay Minerals 38 513521 10.1346/CCMN.1990.0380508.CrossRefGoogle Scholar
Martin de Vidales, J. L., de la Calle, C. and Pons, C. H., 1991 Interstratification K-Mg dans les vermiculites. Comportement particulier de la vermiculite de Malawi Clay Miner. 26 571576 10.1180/claymin.1991.026.4.11.CrossRefGoogle Scholar
Mathieson, A. M., 1958 Mg-vermiculite: A refinement of the crystal structure of the 14.36 Å phase Amer. Mineral. 43 216227.Google Scholar
Mathieson, A. M. and Walker, G. F., 1954 Crystal structure of magnesium-vermiculite Amer. Mineral. 39 231255.Google Scholar
Méring, J., 1949 Interference des rayons X dans les systemes a interstratification desordonnee Acta Crystallogr. 2 371377 10.1107/S0365110X49000977.CrossRefGoogle Scholar
Morel, S. W., 1955 Biotite in the Basement Complex of Southern Nyasaland Geol. Mag. 92 241255 10.1017/S0016756800063585.CrossRefGoogle Scholar
Norrish, K. and Serratosa, J. M., 1973 Factors in the weathering of mica to vermiculite Proc. International Clay Conf., Madrid, 1972 Madrid Division de Ciencias, CSIC 417432.Google Scholar
Plançon, A., 1981 Diffraction by layer structures containing different kinds of layers and stacking faults Jour. Applied Crystallogr. 14 300304 10.1107/S0021889881009424.CrossRefGoogle Scholar
Pons, C. H., Tchoubar, D. and Tchoubar, C., 1980 Organisation des molecules d’eau à la surface des feuillets dans un gel de montmorillonite Bull. Mineral. 103 452456.Google Scholar
Rhoades, J. D. and Coleman, N. T., 1967 Interstratification in vermiculite and biotite produced by potassium soption. I. Evaluation by simple X-ray diffraction pattern inspection Soil Sci. Soc. Amer. Proc. 31 366372 10.2136/sssaj1967.03615995003100030023x.CrossRefGoogle Scholar
Sawhney, B. L. and Reynolds, R. C., 1985 Interstratified clays as fundamental particules: A discussion Clays & Clay Minerals 33 559 10.1346/CCMN.1985.0330611.CrossRefGoogle Scholar
Shirozu, H. and Bailey, S. W., 1966 Crystal structure of a two-layer Mg-vermiculite Amer. Mineral. 51 11241143.Google Scholar