Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T01:12:53.580Z Has data issue: false hasContentIssue false

Stacking Faults With 180° Layer Rotation in Celadonite, an Fe- and Mg-Rich Dioctahedral Mica

Published online by Cambridge University Press:  01 January 2024

Toshihiro Kogure*
Affiliation:
Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Jun Kameda
Affiliation:
Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Victor A. Drits
Affiliation:
Geological Institute of the Russian Academy of Sciences, Pyzhevsky per 7, 119017 Moscow, Russia
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stacking disorder in celadonite, a dioctahedral mica with Fe and Mg as major octahedral cations and which generally adopts the 1M stacking sequence, was investigated mainly by using transmission electron microscopy (TEM). The selected-area electron diffraction patterns with 0kl reflections along the [100] beam direction correspond to the 1M stacking but those along the [110], [11¯0]\$\end{document}, [010], [310], and [31¯0]\$\end{document} directions are frequently streaked along the [001]* direction or contain extra spots from twinned domains. Three-dimensional stacking analyses using sets of two high-resolution TEM images along different directions of the same area of one crystal indicate that all stacking faults involve only 180° layer rotations. These stacking faults produce greater peaks of 0kl reflections than expected in powder X-ray diffraction (XRD) patterns. Simulation of the XRD patterns indicated that 180° layer rotations occur at >10% of total interlayer regions in one celadonite specimen. The interlayer region of celadonite is characterized by a near-zero ditrigonal rotation angle, a small surface corrugation of the basal oxygen plane, and a small amount of Al substitution in the tetrahedral sheets. These features suggest that there is no preference for any of the six stacking angles around the interlayer region. The abundance of 180° layer rotation rather than ±60° and ±120° in the present specimens may be related to their ribbon-like morphologies elongated along the a axis.

Type
Article
Copyright
Copyright © 2008, The Clay Minerals Society

References

Bailey, S.W. and Bailey, S.W., 1984 Classification and structures of the micas Micas Washington, D.C Mineralogical Society of America 112 10.1515/9781501508820.CrossRefGoogle Scholar
Baronnet, A. and Buseck, P.R., 1992 Polytypism and stacking disorder Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy Washington, D.C Mineralogical Society of America 231282 10.1515/9781501509735-011.CrossRefGoogle Scholar
Baronnet, A. Amouric, M. and Chabot, B., 1976 Mechanismes de croissance, polytypisme et polymorphisme de la muscovite hydroxylée synthétique Journal of Crystal Growth 32 3759 10.1016/0022-0248(76)90008-7 (in French with English abstract).CrossRefGoogle Scholar
Baronnet, A. and Kang, Z.C., 1989 About the origin of mica polytypes Phase Transitions 16/17 477493 10.1080/01411598908245724.10.1080/01411598908245724CrossRefGoogle Scholar
Brigatti, M.F. Caprilli, E. Malferrari, D. Medici, L. and Poppi, L., 2005 Crystal structure and chemistry of trilithionite-2M 2 and polylithionite-2M 2 European Journal of Mineralogy 17 475481 10.1127/0935-1221/2005/0017-0475.CrossRefGoogle Scholar
Brigatti, M.F. Frigieri, P. and Poppi, L., 1998 Crystal chemistry of Mg-, Fe-bearing muscovite-2M 1 American Mineralogist 83 775785 10.2138/am-1998-7-809.CrossRefGoogle Scholar
Brigatti, M.F. Guggenheim, S., Mottana, A. Sassi, F.E. Thompson, JB Jr. Guggenheim, S., 2002 Mica crystal chemistry and the influence of pressure, temperature and solid solution on atomistic models Micas: Crystal Chemistry and Metamorphic Petrology Washington, D.C Mineralogical Society of America, and the Geochemical Society 197.Google Scholar
Buckley, H.A. Bevan, J.C. Brown, K.M. and Johnson, L.R., 1978 Glauconite and celadonite: two separate mineral species Mineralogical Magazine 42 373382 10.1180/minmag.1978.042.323.08.CrossRefGoogle Scholar
Cuadros, J. and Altaner, S.P., 1998 Characterization of mixed-layer illite-smectite from bentonites using microscopic, chemical and X-ray methods: constraints on the smectite-to-illite transformation mechanism American Mineralogist 83 762774 10.2138/am-1998-7-808.CrossRefGoogle Scholar
Cuadros, J. and Altaner, S.P., 1998 Compositional and structural features of the octahedral sheet in mixed-layer illite-smectite from bentonites European Journal of Mineralogy 10 111124 10.1127/ejm/10/1/0111.CrossRefGoogle Scholar
Drits, V.A. Besson, G. and Muller, F., 1995 An improved model for structural transformations of heat-treated aluminous dioctahedral 2:1 layer silicates Clays and Clay Minerals 43 718731 10.1346/CCMN.1995.0430608.CrossRefGoogle Scholar
Drits, V.A. McCarty, D.K. and Zviagina, B.B., 2006 Crystal-chemical factors responsible for the distribution of octahedral cations over trans- and cis-sites in dioctahedral 2:1 layer silicates Clays and Clay Minerals 54 131152 10.1346/CCMN.2006.0540201.CrossRefGoogle Scholar
Drits, V.A. and Tchoubar, C., 1990 X-ray Diffraction of Disordered Lamellar Structures. Theory and Application to Microdivided Silicates and Carbons Berlin Springer Verlag 242 pp.Google Scholar
Drits, V.A. Zvyagin, B.B. and Tokmakov, P.P., 1966 Gumbelite — dioctahedral micas 2M 2 Doklady Academii Nauk SSSR 170 13901394 (in Russian).Google Scholar
Ferraris, G. Gula, A. Ivaldi, G. Nespolo, M. Sokolova, E. Uvarova, Y. and Khomyakov, A.P., 2001 First structure determination of an MDO-2O mica polytype associated with a 1M polytype European Journal of Mineralogy 13 10131023 10.1127/0935-1221/2001/0013-1013.CrossRefGoogle Scholar
Ferraris, G. Ivaldi, G., Mottana, A. Sassi, F.E. Thompson, JB Jr. Guggenheim, S., 2002 Structural features of micas Micas: Crystal Chemistry and Metamorphic Petrology Washington, D.C Mineralogical Society of America and the Geochemical Society 117148 10.1515/9781501509070-008.CrossRefGoogle Scholar
Giuseppetti, G. and Tadani, C., 1972 The crystal structure of 2O brittle mica: anandite Tschermaks Mineralogische und Petrographische Mitteilungen 18 169184 10.1007/BF01134206.CrossRefGoogle Scholar
Güven, N., 2001 Mica structure and fibrous growth of illite Clays and Clay Minerals 49 189196 10.1346/CCMN.2001.0490301.CrossRefGoogle Scholar
Iijima, S. and Buseck, P.R., 1978 Experimental study of disordered mica structures by high-resolution electron microscopy Acta Crystallographica A34 709719 10.1107/S0567739478001473.10.1107/S0567739478001473CrossRefGoogle Scholar
Kameda, J. Miyawaki, R. Drits, V.A. and Kogure, T., 2007 Polytype and morphological analyses of gümbelite, a fibrous Mg-rich illite Clays and Clay Minerals 55 453466 10.1346/CCMN.2007.0550501.CrossRefGoogle Scholar
Kilaas, R., 1998 Optimal and near-optimal filters in high-resolution electron microscopy Journal of Microscopy 190 4551 10.1046/j.1365-2818.1998.3070861.x.CrossRefGoogle Scholar
Kimbara, K. and Shimoda, S., 1973 A ferric celadonite in amygdales of dolerite at Taiheizan, Akita prefecture, Japan Clay Science 4 143150.Google Scholar
Kogure, T., Mottana, A. Sassi, F.P. Thompson, JB Jr. Guggenheim, S., 2002 Investigation of micas using advanced TEM Micas: Crystal Chemistry & Metamorphic Petrology Washington, D.C Mineralogical Society of America and the Geochemical Society 281310 10.1515/9781501509070-010.CrossRefGoogle Scholar
Kogure, T., 2007 Imaging of dioctahedral 2:1 layers by high-resolution transmission electron microscopy (HRTEM): Possibility of recording the dehydroxylate American Mineralogist 92 13681373 10.2138/am.2007.2539.CrossRefGoogle Scholar
Kogure, T. and Bunno, M., 2004 Investigation of polytype in lepidolite using electron back-scattered diffraction American Mineralogist 89 16801684 10.2138/am-2004-11-1213.CrossRefGoogle Scholar
Kogure, T. Jige, M. Kameda, J. Yamagishi, A. and Kitagawa, R., 2006 Stacking structures in pyrophyllite revealed by high-resolution transmission electron microscopy (HRTEM) American Mineralogist 91 12931299 10.2138/am.2006.1997.CrossRefGoogle Scholar
Kogure, T. Kameda, J. and Drits, V.A., 2007 Novel 2:1 structure of phyllosilicates formed by annealing Fe3+, Mg-rich dioctahedral micas American Mineralogist 92 15311534 10.2138/am.2007.2667.CrossRefGoogle Scholar
Kogure, T. and Nespolo, M., 1999 First finding of a stacking sequence with (±60°, 180°) rotation in biotite Clays and Clay Minerals 47 784792 10.1346/CCMN.1999.0470614.CrossRefGoogle Scholar
Kogure, T. and Nespolo, M., 1999 A TEM study of long-period mica polytypes: determination of the stacking sequence of oxybiotite by means of atomic-resolution images and Periodic Intensity Distribution (PID) Acta Crystallographica B55 507516 10.1107/S0108768199003845.CrossRefGoogle Scholar
Levinson, A.A., 1953 Studies in the mica group; Relationship between polymorphism and composition in the muscovite—lepidolite series American Mineralogist 38 88107.Google Scholar
Malkova, K.M., 1956 Celadonite from Pobuj’e Mineralogicheski sbornik L’vovskogo. Mineralogicheskogo Obtchestva 10 305318 (in Russian).Google Scholar
Marks, L.D., 1996 Wiener-filter enhancement of noisy HREM images Ultramicroscopy 62 4352 10.1016/0304-3991(95)00085-2.CrossRefGoogle ScholarPubMed
McCarty, D.K. and Reynolds, RC Jr., 1995 Rotationally disordered illite-smectite in Paleozoic K-bentonites Clays and Clay Minerals 43 271284 10.1346/CCMN.1995.0430302.CrossRefGoogle Scholar
Muller, F. Drits, V.A. Plançon, A. and Robert, J.-L., 2000 Structural transformation of 2:1 dioctahedral layer silicates during dehydroxylation-rehydroxylation reactions Clays and Clay Minerals 48 572585 10.1346/CCMN.2000.0480510.10.1346/CCMN.2000.0480510CrossRefGoogle Scholar
Muller, F. Drits, V.A. Plançon, A. and Besson, G., 2000 Dehydroxylation of Fe3+, Mg-rich dioctahedral micas: (I) structural transformation Clay Minerals 35 491504 10.1180/000985500546963.CrossRefGoogle Scholar
Odom, I.E. and Bailey, S.W., 1984 Glauconite and celadonite minerals Micas Washington, D.C Mineralogical Society of America 545572 10.1515/9781501508820-017.CrossRefGoogle Scholar
Rieder, M. Cavazzini, G. D’yakonov, Y.u.S. Frank-Kamenetskii, V.A. Gottardi, G. Guggenheim, S. Koval’, P.V. Müller, G. Neiva, A.M.R. Radoslowich, E.W. Robert, J.L. Sassi, F.P. Takeda, H. Weiss, Z. and Wones, D.R., 1999 Nomenclature of the micas Mineralogical Magazine 63 267279 10.1180/minmag.1999.063.2.13.CrossRefGoogle Scholar
Sakharov, B.A. Besson, G. Drits, V.A. Kameneva, M.Y.u. Salyn, A.L. and Smoliar, B.B., 1990 X-ray study of the nature of stacking faults in the structure of glauconites Clay Minerals 25 419435 10.1180/claymin.1990.025.4.02.CrossRefGoogle Scholar
Slonimskaya, M.V. Drits, V.A. Finko, V.I. and Salyn, A.L., 1978 The nature of interlayer water in fine-dispersed muscovites Izvestiya Akademii Nauk SSSR, Seriya Geologicheskaya 10 95104 (in Russian).Google Scholar
Takeda, H. Haga, N. and Sadanaga, R., 1971 Structural investigation of a polymorphic transition between 2M 2-, 1M-lepidolite and 2M 1-muscovite Mineralogical Journal 6 203215 10.2465/minerj1953.6.203.CrossRefGoogle Scholar
Threadgold, I.M., 1959 A hydromuscovite with the 2M 2 structure, from Mount Lyell, Tasmania American Mineralogist 44 488494.Google Scholar
Treacy, M.M.J. Newsam, J.M. and Deem, M.W., 1991 A general recursion method for calculating diffracted intensities from crystals containing planar faults Proceedings of the Royal Society of London A 433 499520 10.1098/rspa.1991.0062.Google Scholar
Tsipursky, S.I., Kameneva, M.Y., and Drits, V.A. (1985) Structural transformation of Fe3+-conatining 2:1 dioctahedral phyllosilicates in the course of dehydroxylation. Pp. 567577 in: 5th meeting of the European Clay Groups (Konta, J., editor). Prague.Google Scholar
Tsipursky, S.I. and Drits, V.A., 1986 Refinement of celadonite crystal structure Mineralogical Journal 8 3240 (in Russian).Google Scholar
Ylagan, R.F. Altaner, S.P. and Pozzuoli, A., 2000 Reaction mechanisms of smectite illitization associated with hydrothermal alteration from Ponza island, Italy Clays and Clay Minerals 48 610631 10.1346/CCMN.2000.0480603.CrossRefGoogle Scholar
Zhukhlistov, A.P., 2005 Crystal structure of celadonite from the electron diffraction data Crystallography Reports 50 902906 10.1134/1.2132393.CrossRefGoogle Scholar
Zhukhlistov, A.P. Zviagin, B.B. Lazarenko, E.K. and Pavlishin, V.I., 1977 Refinement of α iron celadonite structure Kristallographya 22 498505 (in Russian) [Soviet Physics and Crystallography, 22, 284–290].Google Scholar
Zhukhlistov, A.P. Zviagin, B.B. Lazarenko, E.K. and Pavlishin, V.I., 1979 Typomorphic features of celadonite structure Zapiski Vsesouznogo Mineralogicheskogo Obtchestva 108 348353.Google Scholar
Zhukhlistov, A.P. Zviagin, B.B. Soboleva, S.V. and Fedotov, A.F., 1973 The crystal structure of the dioctahedral mica 2M 2 determined by high voltage electron diffraction Clays and Clay Minerals 21 465470 10.1346/CCMN.1973.0210606.CrossRefGoogle Scholar