Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T21:31:44.828Z Has data issue: false hasContentIssue false

Stable Isotope Evolution of Volcanic Ash Layers During Diagenesis of the Miocene Monterey Formation, California

Published online by Cambridge University Press:  28 February 2024

J. S. Compton
Affiliation:
Department of Geological Sciences, University of Cape Town, Rondebosch 7700 South Africa
M. E. Conrad
Affiliation:
Center for Isotope Geochemistry, Mailstop 70A-3363, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
T. W. Vennemann
Affiliation:
Institute for Geochemistry, University of Tuebingen, Wilhelmstr.56, 72074 Tuebingen, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The oxygen and hydrogen isotope compositions of volcanic ash layers from coastal outcrops of the Miocene Monterey Formation elucidate the progressive burial diagenesis of glass to bentonite and metabentonite. Volcanic glass that texturally appears unaltered is found to have δl8O and δD values that are significantly higher than fresh volcanic glasses. The positive shift in δ18O and δD values is proportional to the amount of hydration and chemical alteration of the glass samples. Initial hydration of the glass results in the exchange of Na for H; later hydration results in the loss of K and Fe in exchange for H and Na. The δ18O values of the most hydrated glass, and clay minerals from bentonite and metabentonite layers are approximately in equilibrium with slightly modified seawater. The δD values of the hydrated glass, and clay minerals from bentonite and metabentonite layers, are significantly depleted in D relative to seawater and suggest meteoric exchange associated with tectonic uplift and erosion in the Pliocene and Pleistocene. Smectite from bentonite layers has δ18O and δD values similar to the most hydrated glass samples, suggesting similar glass-water and smectite-water fractionation factors. Kaolinite and mixed-layered illite-smectite (I-S) altered from smectite have lower δ18O and higher δD values than their precursor. The δ18O and δD of nonvolcanic siliceous mudstones from the Pt. Arguello oil field show an unusual decrease in δD with increasing burial depth that probably reflects the presence of organic hydrogen in the analyzed samples as well as possible D-depleted formation waters from detrital illite-water and hydrocarbon-water exchange.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

References

Barron, J., Casey, R.E. and Barron, J., 1986 Updated diatom biostratigraphy for the Monterey Formation of California Siliceous microfossil and microplankton studies of the Monterey Formation and modern analog Los Angeles, CA SEPM Pacific Section Spec Publ 45 105119.Google Scholar
Behl, R.J. Garrison, R.E., Iijima, A. Abed, A. and Garrison, R., 1994 The origin of chert in the Monterey Formation of California (USA) Siliceous, phosphatic and glauco-nitic sediments of the Tertiary and Mesozoic: Proceedings of the 29th Int Geol Congress, Part C Utrecht Springer-Verlag 101132.Google Scholar
Bird, M.I. and Chivas, A.R., 1988 Stable-isotope evidence for low temperature kaolinitic weathering and post-formational hydrogen-isotope exchange in Permian kaolinites Chem Geol (Isotope Geosci Sect) 72 249265 10.1016/0168-9622(88)90028-0.CrossRefGoogle Scholar
Bramlette, M.N., 1946 The Monterey Formation of California and the origin of its siliceous rocks 10.3133/pp212.CrossRefGoogle Scholar
Capuano, R.M., 1992 The temperature dependence of hydrogen isotope fractionation between clay minerals and water: Evidence from a geopressured system Geochim Cosmochim Acta 56 25472554 10.1016/0016-7037(92)90208-Z.CrossRefGoogle Scholar
Cerling, T.E. Brown, F.H. and Bowman, J.R., 1985 Low temperature alteration of volcanic glass: Hydration, Na, K, 18O and Ar mobility Chem Geol 52 281293.Google Scholar
Clayton, R.N. and Mayeda, T.K., 1963 The use of bromine penta-fluoride in the extraction of oxygen from oxides and silicates for isotopic analysis Geochim Cosmochim Acta 27 4352 10.1016/0016-7037(63)90071-1.CrossRefGoogle Scholar
Compton, J.S., 1991 Origin and diagenesis of clay minerals in the Monterey Formation, Santa Maria Basin area, California Clays Clay Miner 39 449466 10.1346/CCMN.1991.0390501.CrossRefGoogle Scholar
Compton, J.S. and Siever, R., 1986 Diffusion and mass balance of Mg during early dolomite formation, Monterey Formation Geochim Cosmochim Acta 50 125135 10.1016/0016-7037(86)90057-8.CrossRefGoogle Scholar
Compton, J.S. Williams, L.B. and Ferrell, R.E. Jr, 1992 Mineralization of organogenic ammonium in the Monterey Formation, Santa Maria and San Joaquin basins, California, USA Geochim Cosmochim Acta 56 19791991 10.1016/0016-7037(92)90324-C.CrossRefGoogle Scholar
Crain, W.E. Mero, W.E. and Patterson, D., 1985 Geology of the Point Arguello discovery Am Assoc Petrol Geol Bull 69 537545.Google Scholar
DePaolo, D.J. and Finger, K.L., 1991 High resolution strontium isotope stratigraphy and biostratigraphy of the Miocene Monterey Formation, central California Geol Soc Am Bull 103 112124 10.1130/0016-7606(1991)103<0112:HRSISA>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Dobson, P.F. and O’Neil, J.R., 1987 Stable isotope compositions and water contents of boninite series volcanic rocks from Chi-chi-jima, Bonin Islands, Japan Earth Planet Sci Lett 82 7586 10.1016/0012-821X(87)90108-7.CrossRefGoogle Scholar
Eslinger, E.V. Savin, S.M. and Yeh, H.W., 1979 Oxygen isotope geothermometry of diagenetically altered shales Los Angeles, CA SEPM Spec Publ 26 113124.Google Scholar
Fisher, J.B. and Boles, J.R., 1990 Water-rock interaction in Tertiary sandstones, San Joaquin Basin, California, USA: Diage-netic controls on water composition Chem Geol 82 83101 10.1016/0009-2541(90)90076-J.CrossRefGoogle Scholar
France-Lanord, C. Sheppard, S.M.F. et al. , Larson, R.L. Lancelot, Y. 1992 et al. , Hydrogen isotope composition of pore waters and interlayer water in sediments from the central western Pacific, Leg 129 Proc ODP Sci Results 129 College Station, TX Ocean Drilling Program 295302.Google Scholar
Friedman, I. Gleason, J. Sheppard, R.A. Gude, A. 3rd, Swart, P.K. Lohmann, K.C. McKenzie, J. and Savin, S., 1991 Deuterium fractionation as water diffuses into silicic volcanic ash Climate change in continental isotopic records Washington, DC Geophys Monog 78, Am Geophys Union 321324.Google Scholar
Friedman, I. Gleason, J. Warden, A., Swart, P.K. Lohmann, K.C. McKenzie, J. and Savin, S., 1991 Ancient climate from deuterium content of water in volcanic glass Climate change in continental isotopic records Washington, DC Geophys Monog 78, Am Geophys Union 309320.Google Scholar
Friedman, I. and Hardcastle, K., 1988 Deuterium in interstitial water from deep-sea cores J Geophys Res 93 82498263 10.1029/JC093iC07p08249.CrossRefGoogle Scholar
Garlick, G.D. and Dymond, J.R., 1970 Oxygen isotope exchange between volcanic material and ocean water Geol Soc Am Bull 81 21372142 10.1130/0016-7606(1970)81[2137:OIEBVM]2.0.CO;2.CrossRefGoogle Scholar
Garrison, R.E. and Douglas, R.G., 1981 The Monterey Formation and related siliceous rocks of California .Google Scholar
Gilg, H.A. and Sheppard, S.M.F., 1995 Hydrogen isotope fractionation between smectites and water Terra Abstr (abstr suppl No. 1 to Terra Nova) 7 329.Google Scholar
Ingle, J.C. Jr, 1980 Cenozoic paleobathymetry and depositional history of selected sequences within the southern California continental borderland Cushman Foundation Spec Publ 19 163195.Google Scholar
Isaacs, C.M., 1980 Diagenesis of the Monterey Formation examined laterally along the coast near Santa Barbara, California [Ph.D. thesis] Stanford, CA Stanford Univ.Google Scholar
Isaacs, C.M., 1982 Influence of rock composition on kinetics of silica phase changes in the Monterey Formation, Santa Barbara area, California Geology 10 304308 10.1130/0091-7613(1982)10<304:IORCOK>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Kharaka, Y.K. Berry, F.A.F. and Friedman, I., 1973 Isotopic composition of oil-field brines from Kettleman North Dome oil field, California, and their geologic implications Geochim Cosmochim Acta 37 18991908 10.1016/0016-7037(73)90148-8.CrossRefGoogle Scholar
Lipman, P.W., 1965 Chemical composition of glassy and crystalline volcanic rocks U.S. Geol Surv Bull 1201-D .Google Scholar
Matheney, R.K. and Knauth, L.P., 1993 New isotopic temperature estimates for early silica diagenesis in bedded cherts Geology 21 519522 10.1130/0091-7613(1993)021<0519:NITEFE>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Murata, K.J. Friedman, I. and Gleason, J.D., 1977 Oxygen isotope relations between diagenetic silica minerals in Monterey shale, Temblor Range, California Am J Sci 277 259272 10.2475/ajs.277.3.259.CrossRefGoogle Scholar
Newman, S. Epstein, S. and Stolper, E., 1988 Water, carbon dioxide, and hydrogen isotopes in glasses from the ca. 1340 A.D. eruption of the Mono craters, California: Constraints on degassing phenomena and initial volatile content J Vol-canol Geotherm Res 35 7596 10.1016/0377-0273(88)90007-8.CrossRefGoogle Scholar
O’Neil, J.R. and Kharaka, Y.K., 1976 Hydrogen and oxygen isotope exchange reactions between clay minerals and water Geochim Cosmochim Acta 40 241246 10.1016/0016-7037(76)90181-2.CrossRefGoogle Scholar
Primmer, T.J. and Shaw, H., 1991 Variations in the 8D and δ18O compositions of illite-smectites in a partly overpressured Tertiary sequence from an offshore well, Texas Gulf Coast, USA Mar Petrol Geol 8 225231 10.1016/0264-8172(91)90009-P.CrossRefGoogle Scholar
Savin, S.M. Lee, M. and Bailey, S.W., 1988 Isotopic studies of phyllosilicates Hydrous phyllosilicates (exclusive of micas). Rev Mineral 19 Washington, DC Mineral Soc Am 189223 10.1515/9781501508998-012.CrossRefGoogle Scholar
Schiegl, W.E. and Vogel, J.C., 1970 Deuterium content of organic matter Earth Planet Sci Lett 7 307313 10.1016/0012-821X(69)90041-7.CrossRefGoogle Scholar
Schoell, M., Brooks, J. and Weite, D., 1983 Stable isotopes in petroleum research Advances in petroleum geochemistry London Academic Pr 215245.Google Scholar
Sheppard, S.M.F. and Gilg, H.A., 1996 Stable isotope geochemistry of clay minerals Clay Miner 31 124 10.1180/claymin.1996.031.1.01.CrossRefGoogle Scholar
Taylor, B.E., Taylor, H.P. Jr O’Neil, J.R. and Kaplan, I.R., 1991 Degassing of Obsidian Dome rhyolite, Inyo volcanic chain, California Stable isotope geochemistry: A tribute to Samuel Epstein. Geochem Soc Spec Publ 3 339353.Google Scholar
Taylor, B.E. Eichelberger, J.C. and Westrich, H.R., 1983 Hydrogen isotopic evidence of rhyolitic magma degassing during shallow intrusion and eruption Nature 306 541545 10.1038/306541a0.CrossRefGoogle Scholar
Taylor, H.P. Jr, 1968 The oxygen isotope geochemistry of igneous rocks Contrib Mineral Petrol 19 171 10.1007/BF00371729.CrossRefGoogle Scholar
Turi, B. Taylor, H.P. Jr Ferrara, G., Taylor, H.P. Jr O’Neil, J.R. and Kaplan, I.R., 1991 Comparisons of 18O/ 16O and 87Sr/86Sr in volcanic rocks from the Pontine Islands, M. Ernici, and Campania with other areas in Italy Stable isotope geochemistry: A tribute to Samuel Epstein. Geochem Soc Spec Publ 3 307324.Google Scholar
Vennemann, T.W. and O’Neil, J.R., 1993 A simple and inexpensive method of hydrogen isotope and water analyses of minerals and rocks based on zinc reagent Chem Geol 103 227234 10.1016/0009-2541(93)90303-Z.CrossRefGoogle Scholar
Washington, H.S., 1917 Chemical analyses of igneous rocks, U.S .Google Scholar
White, A.E., 1983 Surface chemistry and dissolution kinetics of glassy rocks at 25°C Geochim Cosmochim Acta 47 805815 10.1016/0016-7037(83)90114-X.CrossRefGoogle Scholar
White, L.D., 1989 Chronostratigraphic and paleoceanographic aspects of selected chert intervals in the Miocene Monterey Formation, California [Ph.D. thesis] Santa Cruz, CA Univ of California, Santa Cruz.Google Scholar
Wilkinson, M. Crowley, S.F. and Marshall, J.D., 1992 Model for the evolution of oxygen isotope ratios in the pore fluids of mudrocks during burial Mar Petrol Geol 9 98105 10.1016/0264-8172(92)90007-2.CrossRefGoogle Scholar
Wilson, M.R. Kyser, T.K. Mehnert, H.H. and Hoeve, J., 1987 Changes in the H-O-Ar isotope composition of clays during retrograde alteration Geochim Cosmochim Acta 51 869878 10.1016/0016-7037(87)90100-1.CrossRefGoogle Scholar
Winter, B.L. and Knauth, L.P., 1992 Stable isotope geochemistry of carbonate fracture fills in the Monterey Formation, California J Sed Petr 62 208219.Google Scholar
Yeh, H.-W., 1980 D/H ratios and late-stage dehydration of shales during burial Geochim Cosmochim Acta 44 341352 10.1016/0016-7037(80)90142-8.CrossRefGoogle Scholar
Yeh, H.-W. and Savin, S.M., 1976 The extent of oxygen isotope exchange between clay minerals and sea water Geochim Cosmochim Acta 40 743748 10.1016/0016-7037(76)90027-2.CrossRefGoogle Scholar
Yeh, H.-W. and Savin, S.M., 1977 Mechanisms of burial metamor-phism of argillaceous sediments 3. O-isotope evidence Geol Soc Am Bull 88 13211330 10.1130/0016-7606(1977)88<1321:MOBMOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar