Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T13:52:22.024Z Has data issue: false hasContentIssue false

Some Physicochemical Properties of the White Sepiolite Known as Pipestone From Eskişehir, Turkey

Published online by Cambridge University Press:  01 January 2024

Müşerref Önal*
Affiliation:
Department of Chemistry, Faculty of Science, Ankara University, Tandoğan, 06100 Ankara, Turkey
Hamza Yilmaz
Affiliation:
Department of Chemistry, Faculty of Science, Ankara University, Tandoğan, 06100 Ankara, Turkey
Yüksel Sarikaya
Affiliation:
Department of Chemistry, Faculty of Science, Ankara University, Tandoğan, 06100 Ankara, Turkey
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Various physicochemical characteristics of a sepiolite sample from the Eskişehir area, Turkey, were investigated to help in making predictions about possible uses of the material. The sample was examined by chemical analysis (CA), thermal analysis (DTA/TGA), X-ray diffraction (XRD) analysis, particle-size analysis (PSA), linear dilatometry (LD), scanning electron microscopy (SEM), mercury porosimetry (Hg-Por.), and low-temperature nitrogen adsorption/desorption (N2-AD) techniques. The CA and XRD data indicated that the sepiolite contains only 6% dolomite by mass. The XRD patterns showed that sepiolite anhydride, enstatite, diopside, and opal-CT form upon heating the sepiolite above 600, 800, 900, and 1200°C, respectively. The maximum rate of endothermic changes in the DTA and TGA curves were observed at 82, 287, and 491°C, corresponding to the loss of external, zeolitic, and bound water from the sepiolite, respectively. Dehydroxylation and recrystallization of the sepiolite were fastest at 845°C and 862°C, respectively. The LD curve indicated that the shrinkage began at 800°C and reached 4.0% at 1000°C. The proportion of particles with diameters of <2 µm, and the external surface area of the long-term (24 h) water-treated sepiolite were determined by PSA as 79% by volume, and 8 m2g−1, respectively. The SEM view revealed discrete bundles of sepiolite fibers of various lengths. The specific surface area found from adsorption data was 316 m2g−1. The specific micro-, meso-, macro-, and total-pore volumes obtained from the combination of Hg-Por. and N2-AD results were 0.16, 0.21, 0.45, and 0.82 cm3g−1, respectively. The average macropore and micro-mesopore radii in the sepiolite were estimated (using the Hg-Por. and N2-AD data) tobe 35 and 2.4 nm, respectively.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2009

References

Akbulut, A. and Kadir, S., 2003 The geology and origin of sepiolite, palygorskite and saponite in Neogene lacustrine sediments of the Serinhisar-Acıpayam basin, Denizli, SW Turkey Clays and Clay Minerals 51 279292 10.1346/CCMN.2003.0510304.CrossRefGoogle Scholar
Akıncı, , 1967 Eskişehir 124-C1 paftasının jeolojisi ve tabakalı lületaşı zuhurları Maden Tetkik ve Arama Enstitüsü Dergisi (Bulletin of Mining Research and Exploration Institute of Turkey) 67 8299.Google Scholar
Aras, A., 2004 The change of phase composition in kaolinite-and illite-rich clay-based ceramic bodies Applied Clay Science 24 257269 10.1016/j.clay.2003.08.012.CrossRefGoogle Scholar
Arık, H. Kadir, S. and Sarıtaş, S., 1996 Investigation of the structural transformation and refractory properties of the brown sepiolite due to the heating at various temperatures Turkish Journal of Engineering and Environmental Sciences 20 223244 (in Turkish).Google Scholar
Balcı, S., 1996 Thermal decomposition of sepiolite and variations in pore structure with and without acid pre-treatment Joürnal of Chemical Technology and Biotechnology 66 7278 10.1002/(SICI)1097-4660(199605)66:1<72::AID-JCTB442>3.0.CO;2-T.3.0.CO;2-T>CrossRefGoogle Scholar
Brunauer, S. Emmett, P.H. and Teller, E., 1938 Adsorption of gases in multimolecular layers Journal of the American Chemical Society 60 308319 10.1021/ja01269a023.CrossRefGoogle Scholar
Campelo, J.M. Garcia, A. Luna, S. and Marinas, J.M., 1987 Catalytic activity of natural sepiolites in cyclohexene skeletal isomerization Clay Minerals 22 233236 10.1180/claymin.1987.022.2.11.CrossRefGoogle Scholar
Çetişli, H. and Gedikbey, T., 1990 Dissolution kinetics of sepiolite from Eskişehir (Turkey) in hydrochloric and nitric acids Clay Minerals 25 207215 10.1180/claymin.1990.025.2.06.CrossRefGoogle Scholar
Chambers, G.P.C. (1959) Some industrial applications of the clay mineral sepiolite. Silicates Industriels, 181189.Google Scholar
Corma, A. and Peréz-Pariente, J., 1987 Catalytic activity of modified silicates: I. Dehydration of ethanol catalyzed by acidic sepiolite Clay Minerals 22 423433 10.1180/claymin.1987.022.4.06.CrossRefGoogle Scholar
Dandy, Alan J., 1968 Sorption of vapors by sepiolite The Journal of Physical Chemistry 72 1 334339 10.1021/j100847a065.CrossRefGoogle Scholar
Dandy, A.J. and Nadiye-Tabbiruku, M.S., 1975 The effect of heating in vacua on the microporosity of sepiolite Clays and Clay Minerals 23 428430 10.1346/CCMN.1975.0230603.CrossRefGoogle Scholar
Dandy, A.J. and Nadiye-Tabbiruku, M.S., 1982 Surface properties of sepiolite from Amboseli, Tanzania, and its catalytic activity for ethanol decomposition Clays and Clay Minerals 30 347352 10.1346/CCMN.1982.0300505.CrossRefGoogle Scholar
Dubinin, M.M., 1967 Adsorption in macropores Journal of Colloid and Interface Science 23 487499 10.1016/0021-9797(67)90195-6.CrossRefGoogle Scholar
Ece, I. and Coban, F., 1994 Geology, occurrence, and genesis of Eskişehir sepiolite, Turkey Clays and Clay Minerals 42 8192 10.1346/CCMN.1994.0420111.CrossRefGoogle Scholar
Elzea, J.M. Odom, I.E. and Miles, W.J., 1994 Distinguishing well-ordered opal-CT and opal-C from high temperature cristobalite by X-ray diffraction Analytica Chimica Acta 286 107116 10.1016/0003-2670(94)80182-7.CrossRefGoogle Scholar
Esmer, K., 2004 Electrical conductivity and dielectric behavior of modified sepiolite clay Applied Clay Science 25 1722 10.1016/S0169-1317(03)00159-5.CrossRefGoogle Scholar
Everett, D.H. Parfitt, G.D. Sing, K.S.W. and Wilson, R., 1974 The SCI/IUPAC/NPL project on surface area standards Journal of Applied Chemistry and Biotechnology 24 199219 10.1002/jctb.5020240404.CrossRefGoogle Scholar
Galán, E., 1996 Properties and applications of palygorskite-sepiolite clays Clay Minerals 31 443453 10.1180/claymin.1996.031.4.01.CrossRefGoogle Scholar
Galán, E. and Ferrero, A., 1982 Palygorskite-sepiolite clays of Lebrija, southern Spain Clays and Clay Minerals 30 191199 10.1346/CCMN.1982.0300305.CrossRefGoogle Scholar
Grillet, Y. Cases, J.M. Francois, M. Rouquerol, J. and Poirier, J.E., 1988 Modification of the porous structure and surface area of sepiolite under vacuum thermal treatment Clays and Clay Minerals 36 232242 10.1346/CCMN.1988.0360304.CrossRefGoogle Scholar
Hang, P.T. and Brindley, G.W., 1970 Methylene blue adsorption by clay minerals. Determination surface areas and cation exchange capacities (Clay-organic studies XVIII) Clays and Clay Minerals 18 203312 10.1346/CCMN.1970.0180404.CrossRefGoogle Scholar
Helios-Rybicka, E., 1985 Sorption of Ni, Zn and Cd on sepiolite Clay Minerals 20 525527 10.1180/claymin.1985.020.4.09.CrossRefGoogle Scholar
Inukai, K. Miyawaki, R. Tomura, S. Shimosaka, K. and İrkoç, T., 1994 Purification of Turkish sepiolites through hydrochloric acid treatment Applied Clay Science 9 1129 10.1016/0169-1317(94)90012-4.CrossRefGoogle Scholar
Kadir, S. Baş, H. and Karakoç, Z., 2002 Origin of sepiolite and loughlinite in a Neogene sedimentary lacustrine environment, Mihalıççık-Eskişehir, Turkey The Canadian Mineralogist 40 10911102 10.2113/gscanmin.40.4.1091.CrossRefGoogle Scholar
Kahraman, S. Önal, M. Sarıkaya, Y. and Bozdoğan, , 2005 Characterization of silica polymorphs in kaolins by X-ray diffraction before and after phosphoric acid digestion and thermal treatment Analytica Chimica Acta 552 201206 10.1016/j.aca.2005.07.045.CrossRefGoogle Scholar
Karakaya, N. Karakaya, M. Temel, A. Küpeli, and Tunaoğlu, C., 2004 Mineralogical and chemical characterization of sepiolite occurrences at Karapınar (Konya Basin, Turkey) Clays and Clay Minerals 52 495509 10.1346/CCMN.2004.0520410.CrossRefGoogle Scholar
Kıyohiro, T. and Otsuka, R., 1989 Dehydration mechanism of bound water in sepiolite Thermochimica Acta 147 127138 10.1016/0040-6031(89)85169-X.CrossRefGoogle Scholar
Kloubek, J., 1981 Hysterisis in porosimetry Powder Technology 29 6373 10.1016/0032-5910(81)85005-X.CrossRefGoogle Scholar
Komarneni, S. Fyte, A. and Kennedy, G.J., 1986 Detection of nonequivalent Si sites in sepiolite and palygorskite by solid-state 29Si magic angle spinning-nuclear magnetic resonance Clays and Clay Minerals 34 99102 10.1346/CCMN.1986.0340113.CrossRefGoogle Scholar
Kulbicki, C., 1959 High temperature phases in sepiolite attapulgite and saponite American Mineralogist 41 752758.Google Scholar
Lu, G.Q. and Zhao, X.S., 2004 Nanoporous Materials London Imperial College Press 10.1142/p181.CrossRefGoogle Scholar
McKeown, D.A. Post, J.E. and Etz, E.S., 2002 Vibrational analysis of palygorskite and sepiolite Clays and Clay Minerals 50 667680 10.1346/000986002320679549.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C. Jr., 1997 X-ray Diffraction and the Identification and Analysis of Clay Minerals 2 New York Oxford University Press.Google Scholar
Moscou, L. and Lub, S., 1981 Practical use of mercury porosimetry in the study of porous solids Powder Technology 29 4552 10.1016/0032-5910(81)85003-6.CrossRefGoogle Scholar
Murray, H.H., 2000 Traditional and new applications for kaolin, smectite and palygorskite. A general overview Applied Clay Science 17 207221 10.1016/S0169-1317(00)00016-8.CrossRefGoogle Scholar
Önal, M. Kahraman, S. and Sarikaya, Y., 2007 Differentiation of α-cristobalite from opals in bentonites from Turkey Applied Clay Science 35 2530 10.1016/j.clay.2006.07.003.CrossRefGoogle Scholar
Özdemir, M. and Kıpçak, , 2004 Dissolution kinetics of sepiolite in hydrochloric acid nitric acid Clays and Clay Minerals 52 714720 10.1346/CCMN.2004.0520606.CrossRefGoogle Scholar
Otsuka, R. Mariko, T. and Sakamoto, T., 1973 Mineralogische eigenschaften vom Meerschaum von Eskişehir, Türkei Memoirs of the School of Science and Engineering 37 4352.Google Scholar
Post, J.L., 1978 Sepiolite deposits of the Las Vegas, Nevada area Clays and Clay Minerals 26 5864 10.1346/CCMN.1978.0260107.CrossRefGoogle Scholar
Preisinger, A., 1959 X-ray study of the structure of sepiolite Clays and Clay Minerals 6 6167 10.1346/CCMN.1957.0060106.CrossRefGoogle Scholar
Preisinger, A., 1963 Sepiolite and related compounds: its stability and applications Clays and Clay Minerals 10 365371 10.1346/CCMN.1961.0100132.CrossRefGoogle Scholar
Rautureau, M. and Yücel, A., 1976 Etude par microscopie et microdiffraction electronique de l’ecume de mer, pole mal Cristallise de la famille des sepiolites Journal de Microscopie et de Spectroscopie Électronique 1 405414.Google Scholar
Robertson, R.H.S. (1957) Sepiolite: a versatile raw material. Chemistry and Industry, 14921495.Google Scholar
Rouquerol, F. Rouquerol, J. and Sing, K., 1999 Adsorption by Powders and Porous Solids London Academic Press.Google Scholar
Rytwo, G. Serben, C. Nir, S. and Margulies, L., 1991 Use of methylene blue and crystal violet for determination of exchangeable cations in montmorillonite Clays and Clay Minerals 39 551555 10.1346/CCMN.1991.0390510.CrossRefGoogle Scholar
Sarikaya, Y. and Aybar, S., 1978 The adsorption of NH3, N2O and CO2 gases on the 5A molecular sieve Communications (Faculty of Science, University of Ankara) B24 3339.Google Scholar
Sarıkaya, Y. Yücel, A. Eğilmez, Makul, G. Almac, R. Harman, I. and Bozdoğan, , 1985 Evaluation of sepiolite wastes: use in cigarette filters Doğa Bilim Dergisi B9 277287 (in Turkish).Google Scholar
Sarıkaya, Y. Önal, M. Baran, B. and Alemdaroğlu, T., 2000 The effect of thermal treatment on some of the physico-chemical properties of a bentonite Clays and Clay Minerals 48 557562 10.1346/CCMN.2000.0480508.CrossRefGoogle Scholar
Serna, C. Ahlrichs, J.L. and Serratosa, J.M., 1975 Folding in sepiolite crystals Clays and Clay Minerals 23 452457 10.1346/CCMN.1975.0230607.CrossRefGoogle Scholar
Shirvani, M. Kalbasi, M. Shariatamadari, Nourbaksh, F. and Najati, B., 2006 Sorption-desorption of cadmium in aqueous palygorskite, sepiolite and calcite suspensions: Isotherm hysteresis Chemosphere 65 21782184 10.1016/j.chemosphere.2006.06.002.CrossRefGoogle ScholarPubMed
Sugahara, Y. Kurada, K. and Kato, C., 1985 Nitridation of sepiolite by carbothermal reduction Journal of Materials Science Letters 4 928931 10.1007/BF00720542.CrossRefGoogle Scholar
Sugiura, M. Hayashi, H. and Suzuki, T., 1991 Adsorption of ammonia by sepiolite in ambient air Clay Science 8 87100.Google Scholar
Ünal, H.I. and Erdoğan, B., 1998 The use of sepiolite for decolorization of sugar juice Applied Clay Science 12 419429 10.1016/S0169-1317(97)00023-9.CrossRefGoogle Scholar
Wang, Q.K. Matsuura, T. Feng, C.Y. Weir, M.R. Detellier, C. Rutinduka, E. and Le Van Mao, R., 2001 The sepiolite membrane for ultrafiltration Journal of Membrane Science 184 153163 10.1016/S0376-7388(00)00605-0.CrossRefGoogle Scholar
Weir, M.R. Rutinduka, E. Detellier, C. Feng, C.Y. Wang, Q.K. Matsura, T. and Le Van Mao, R., 2001 Fabrication ultrafiltration membranes composed entirely of a naturally occurring sepiolite clay mineral Journal of Membrane Science 182 4150 10.1016/S0376-7388(00)00547-0.CrossRefGoogle Scholar
Weir, M.R. Kuang, W.K. Facey, G.A. and Detellier, C., 2002 Solid-state nuclear magnetic resonance study of sepiolite and partially dehydrated sepiolite Clays and Clay Minerals 50 240247 10.1346/000986002760832838.Google Scholar
Yalçın, H. and Bozkaya, , 1995 Sepiolite-palygorskite from the Hekimhan region (Turkey) Clays and Clay Minerals 43 705717 10.1346/CCMN.1995.0430607.CrossRefGoogle Scholar
Yalçın, H. and Bozkaya, , 2004 Ultramafic-rock-hosted vein sepiolite occurrences in the Ankara ophiolitic melange, central Anatolia, Turkey Clays and Clay Minerals 52 227239 10.1346/CCMN.2004.0520209.CrossRefGoogle Scholar
Yücel, A. Rautureau, M. Tchoubar, D. and Tchoubar, C., 1980 Calculation of the X-ray powder reflection profiles of very small needle-like crystals. I. Principles of the method Journal of Applied Crystallography 13 370374 10.1107/S0021889880012320.CrossRefGoogle Scholar