Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T03:39:46.578Z Has data issue: false hasContentIssue false

Smectite-to-illite alteration in salt-bearing bentonites (The East Slovak Basin)

Published online by Cambridge University Press:  01 January 2024

M. Honty*
Affiliation:
Comenius University, Mlynská Dolina, 84215 Bratislava, Slovakia
P. Uhlík
Affiliation:
Comenius University, Mlynská Dolina, 84215 Bratislava, Slovakia
V. Šucha
Affiliation:
Comenius University, Mlynská Dolina, 84215 Bratislava, Slovakia
M. Čaplovičová
Affiliation:
Comenius University, Mlynská Dolina, 84215 Bratislava, Slovakia
J. Franců
Affiliation:
Czech Geological Survey, Leitnerova 22, 658 69 Brno, Czech Republic
N. Clauer
Affiliation:
Centre de Géochimie de la Surface (CNRS-ULP), Ecole et Observatoire des Sciences de la Terre, 67084-Strasbourg, France
A. Biroň
Affiliation:
Institute of Geology, Severná 5, 974 01 Banská Bystrica, Slovakia
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of a saline environment on illitization in volcanoclastic rocks is examined in deep boreholes in the East Slovak Basin. Based on X-ray diffraction analysis, it is concluded that illite-smectite (I–S) expandability is always less in the salt-bearing bentonites (SBB) than in the salt-free bentonites (SFB) for a given depth interval. These two lithologies can be distinguished easily by water-leachate chemistry. Within the depth interval 2100–2500 m, the expandability in SBB varies within the range 25–10% expandable with R1 and R3 ordering in SBB and 68–35% expandable with R0 ordering in SFB. In two shallow SBB samples the expandability is close to that of SFB, suggesting that salinity alone does not enhance the illitization; but salinity may enhance it when combined with higher burial temperature. Vitrinite reflectance and Tmax of RockEval pyrolysis measured in adjacent shales confirm that the increased illitization in SBB is not due to heating and/or erosion. The model of burial and thermal history calibrated by organic maturity suggests that the same thermal history produces two different expandabilities in the two lithologies (SBB and SFB). Particle thickness measurements and K-Ar data were used to deduce the crystal growth mechanism of illitization in SBB. Whereas surface-controlled growth is typical for SFB, simultaneous nucleation and growth played a more important role in the case of SBB. The effect of a salty environment on the illitization is not yet fully understood and may have severe consequences for the utilization of bentonites as engineering barriers in radioactive waste disposal sites if salt formations used as host rocks are taken into account.

Type
Research Article
Copyright
Copyright © 2004, The Clay Minerals Society

References

Baráth, I. Kováč, M. Soták, J. Lankreijer, A., Grecula, P. Hovorka, D. and Putiš, M., (1997) Tertiary collision, metamorphism and basin forming processes in the Eastern Slovakia (central Western Carpathians) Geological Evolution of the Western Carpathians Bratislava Mineralia Slovaca — Monograph 6578.Google Scholar
Bauer, A. and Velde, B., (1999) Smectite transformation in high molar KOH solutions Clay Minerals 34 259273 10.1180/000985599546226.Google Scholar
Bonhomme, M., Thuizat, R., Pinault, Y., Clauer, N., Wendling, R. and Winkler, R. (1975) Methode de datation potassiumargon. Appareillage et technique. Note technique de l’Institut de Géologie, Université Strasbourg, 3, 53 pp.Google Scholar
Clauer, N. Srodoñ, J. Franců, J. and Šucha, V., (1997) K-Ar dating of illite fundamental particles separated from illitesmectite Clay Minerals 32 181196 10.1180/claymin.1997.032.2.02.Google Scholar
Cox, A. and Dalrymple, G.B., (1967) Statistical analysis of geomagnetic reversal data and the precision of potassiumargon dating Journal of Geophysical Research 72 26032614 10.1029/JZ072i010p02603.CrossRefGoogle Scholar
Deconinck, J.F. Strasser, A. and Debrabant, P., (1988) Formation of illitic minerals at surface temperatures in Purbeckian sediments (Lower Berriasian, Swiss and French Jura) Clay Minerals 23 91103 10.1180/claymin.1988.023.1.09.Google Scholar
Drits, V.A. Eberl, D.D. and Środoń, J., (1998) XRD measurement of mean thickness, thickness distribution and strain for illite and illite/smectite crystallites by the Bertaut-Warren-Averbach technique Clays and Clay Minerals 46 461475 10.1346/CCMN.1998.0460105.Google Scholar
Dudek, T. and Środoń, J., (1996) Identification of illite/smectite by X-ray powder diffraction taking into account the lognormal distribution of crystal thickness Geologica Carpathica — Clays 5 2132.Google Scholar
Dudek, T. Środoń, J. Eberl, D.D. Elsass, F. and Uhlík, P., (2002) Thickness distribution of illite crystals in shales. Part I: X-ray diffraction vs. high-resolution transmission electron microscopy measurements Clays and Clay Minerals 50 562577 10.1346/000986002320679305.Google Scholar
Eberl, D.D. and Hower, J., (1976) Kinetics of illite formation Geological Society of America Bulletin 87 13261330 10.1130/0016-7606(1976)87<1326:KOIF>2.0.CO;2.Google Scholar
Eberl, D.D., Środoń, J. and Northrop, H.R. (1986) Potassium fixation in smectite by wetting and drying. Pp. 296326 in: Geochemical Processes at Mineral Surfaces (Davis, J.A. and Hayes, K.F., editors). ACS Symposium Series, 323, American Chemical Society.Google Scholar
Eberl, D.D. Velde, B. and McCormick, T., (1993) Synthesis of illite-smectite from smectite at earth surface temperatures and high pH Clay Minerals 28 4960 10.1180/claymin.1993.028.1.06.Google Scholar
Eberl, D.D., Drits, V., Środoń, J. and Nüesch, R. (1996) MudMaster: a program for calculating crystallite size distribution and strain from the shapes of X-ray diffraction peaks. US Geological Survey, Open-File report 96-171.Google Scholar
Eberl, D.D. Nüesch, R. Šucha, V. and Tsipursky, S., (1998) Measurement of fundamental illite particle thickness by X-ray diffraction using PVP-10 intercalation Clays and Clay Minerals 46 8997 10.1346/CCMN.1998.0460110.Google Scholar
Eberl, D.D. Drits, V.A. and Środoń, J., (1998) Deducing growth mechanisms for minerals from the shapes of crystal size distributions American Journal of Science 298 499533 10.2475/ajs.298.6.499.Google Scholar
Eberl, D.D., Drits, V.A. and Środoń, J. (2001) User’s guide to GALOPER — a program for simulating the shapes of crystal size distributions—and associated programs. US Geological Survey Open-File report OF00-505, 44 pp.Google Scholar
Elsass, F. Beaumont, A. Pernes, M. Jaunet, A.-M. and Tessier, D., (1998) Changes in layer organization of Na- and Ca-exchanged smectite materials during solvent exchanges for embedment in resin The Canadian Mineralogist 36 14751483.Google Scholar
Franců, J. Rudinec, R. and Šimánek, V., (1989) Hydrocarbon generation zone in the East Slovakian Neogene basin: model and geochemical evidence Geologický zborník. —Geologica Carpathica 40 355384.Google Scholar
Franců, J. Müller, P. Šucha, V. and Zatkalíková, V., (1990) Organic matter and clay minerals as indicators of thermal history in the Transcarpathian depression (East Slovakian Neogene basin) and the Vienna basin Geologický zborník. — Geologica Carpathica 41 535546.Google Scholar
Galamay, A.R. and Karoli, S., (1997) Geochemistry of the Badenian salts from the East Slovak basin (Slovakia) Slovak Geological Magazine 3 187192.Google Scholar
Hay, R.L. Guldman, S.G. Matthews, J.C. Lander, R.H. Duffin, M.E. and Kyser, T.K., (1991) Clay mineral diagenesis in core KM-3 of Searles Lake, California Clays and Clay Minerals 39 8496 10.1346/CCMN.1991.0390111.Google Scholar
Heller-Kallai, L. and Eberl, D.D. (1997) Potassium fixation by smectites in wetting-drying cycles with different anions. Proceedings of the International Clay Conference, Ottawa, pp. 561567.Google Scholar
Honty, M. Šucha, V. and Magyar, J., (2002) Rock-facies dependent use of illite-smectite paleothermometry Mineralia Slovaca 34 2934.Google Scholar
Honty, M. Šucha, V. and Puškelová, L., (2003) Potassium fixation in smectites by wetting and drying with NaCl solutions Geologica Carpathica 54 261264.Google Scholar
Hower, J. Eslinger, E.V. Hower, M.E. and Perry, E.A., (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence Geological Society of America Bulletin 87 725737 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2.Google Scholar
Huang, W.-L. Longo, J.M. and Pevear, D.R., (1993) An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer Clays and Clay Minerals 41 162177 10.1346/CCMN.1993.0410205.Google Scholar
Jackson, M.L., (1975) Soil Chemical Analysis — Advanced Course Madison, Wisconsin Published by the author 386 pp.Google Scholar
Karoli, S. (1993) Evaporite facies in the Neogene East Slovakia Basin. Abstracts of the 8th Meeting of the Association of European Geological Societies, Budapest.Google Scholar
Karoli, S. Janočko, J. Kotulák, P. and Verdon, P., (1997) Sedimentology of Karpatian evaporites in the East-Slovakian Neogene basin (Slovakia) Slovak Geological Magazine 3 201211.Google Scholar
Kile, D.E. Eberl, D.D. Hoch, A.R. and Reddy, M.M., (2000) An assessment of calcite crystal growth mechanisms based on crystal size distributions Geochimica et Cosmochimica Acta 64 29372950 10.1016/S0016-7037(00)00394-X.Google Scholar
Kováč, M. Kováč, P. Marko, F. Karoli, S. and Janočko, J., (1995) The East Slovakian Basin — a complex back arc basin Tectonophysics 252 453466 10.1016/0040-1951(95)00183-2.Google Scholar
Král’, M. Lizon, I. and Jančí, J., (1985) Geothermal Research in Slovakia Bratislava Geofond (in Slovak).Google Scholar
Lexa, J. Konečný, V. Kaličiak, M. Hojstričová, V., Rakðs, M. and Vozár, J., (1993) Distribution of the Carpathian Pannonian region volcanites in space and time Geodynamick model a hlbinná stavba Západnch Karpát GÚDŠ Bratislava Konferencie—Sympóziá-Semináre 5771 (in Slovak).Google Scholar
Mello, U.T. Karner, G.D. and Anderson, R.N., (1995) Role of salt in restraining the maturation of subsalt source rocks Marine and Petroleum Geology 12 697716 10.1016/0264-8172(95)93596-V.Google Scholar
Michalíček, M., (1965) Příspěvek k hydrogeochemii a hydrogeologii hlubinnch vod Trebišovské nížiny Geologìcké práce, Zprâvy 35 167185.Google Scholar
Michalíček, M., (1970) K původu chloridosodných solanek v miocénu trebišovské nížiny Sborník geologických věd, řada HIG 7 107159.Google Scholar
Mosser-Ruck, R. Cathelineau, M. Baronnet, A. and Trouiller, A., (1999) Hydrothermal reactivity of K-smectite at 300°C and 100 bar: dissolution-crystallization process and non-expandable dehydrated smectite formation Clay Minerals 34 275290 10.1180/000985599546235.Google Scholar
Nadeau, P.H. and Reynolds, R.C., (1981) Burial and contact metamorphism in the Mancos shale Clays and Clay Minerals 29 249259 10.1346/CCMN.1981.0290402.Google Scholar
Nier, A.O., (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon and potassium Physical Review 77 789793 10.1103/PhysRev.77.789.Google Scholar
Odin, G.S. Bonhomme, M.G. and Odin, G.S., (1982) Argon behaviour in clays and glauconies during preheating experiments Numerical Dating in Stratigraphy New York John Wiley 333343.Google Scholar
Poelchau, H.S. Baker, D.R. Hantschel, T. Horsfield, B. Wygrala, B., Welte, D.H. Horsfield, B. and Baker, D.R., (1997) Basin simulation and the design of the conceptual basin model Petroleum and Basin Evolution Berlin, Heidelberg, New York Springer 570.Google Scholar
Pollastro, R.M., (1993) Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of miocene to mississipian age Clays and Clay Minerals 41 119133 10.1346/CCMN.1993.0410202.Google Scholar
Rudinec, R., (1989) New view on the paleogeographic development of the Transcarpathian Depression during the Neogene Mineralia Slovaca 21 2742.Google Scholar
Rudinec, R., (1990) Vertical distribution of Neogene sediments in the transcarpathian depression Mineralia Slovaca 22 5 393397.Google Scholar
Singer, A. and Stoffers, P., (1980) Clay mineral diagenesis in two east African lake sediments Clay Minerals 15 291307 10.1180/claymin.1980.015.3.09.Google Scholar
Środoń, J., (1981) X-ray identification of randomly interstratified illite-smectite in mixtures with discrete illite Clay Minerals 16 297304 10.1180/claymin.1981.016.3.07.Google Scholar
Środoń, J., (1984) Mixed-layer illite-smectite in low-temperature diagenesis: data from the Miocene of the Carpathian foredeep Clay Minerals 19 205215 10.1180/claymin.1984.019.2.07.Google Scholar
Środoń, J., (1995) Reconstruction of maximum paleotemperatures at present erosional surface of the Upper Silesia Basin, based on the composition of illite/smectite in shales Studia Geologica Polonica 108 920.Google Scholar
Środoń, J. Eberl, D.D. and Bailey, S.W., (1984) Illite Micas Washington, D.C Mineralogical Society of America 495544 10.1515/9781501508820-016.CrossRefGoogle Scholar
Środoń, J. Eberl, D.D. and Drits, V.A., (2000) Evolution of fundamental-particle size during illitization of smectite and implications for reaction mechanism Clays and Clay Minerals 48 446458 10.1346/CCMN.2000.0480405.CrossRefGoogle Scholar
Środoń, J. Clauer, N. and Eberl, D.D., (2002) Interpretation of K-Ar dates of illitic clays from sedimentary rocks aided by modeling American Mineralogist 87 15281535 10.2138/am-2002-11-1202.Google Scholar
Steiger, R.H. and Jäger, E., (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology Earth and Planetary Science Letters 36 359362 10.1016/0012-821X(77)90060-7.Google Scholar
Sweeney, J.J. and Burnham, A.K., (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics American Association of Petroleum Geologists Bulletin 74 15591570.Google Scholar
Šucha, V. Kraus, I. Gerthofferová, H. Peteš, J. and Sereková, M., (1993) Smectite to illite conversion in bentonites and shales of the East Slovak Basin Clay Minerals 28 243253 10.1180/claymin.1993.028.2.06.Google Scholar
Tessier, D. (1984) Étude experimental de l’organisation des materiaux argileux. Dr. Science thesis, Université Paris VII, INRA, 361 pp.Google Scholar
Turner, C.E. and Fishman, N.S., (1991) Jurassic lake T’oo’dichi’: a large alkaline, saline lake, Morrison formation, eastern Colorado Plateau Geological Society of America Bulletin 103 538558 10.1130/0016-7606(1991)103<0538:JLTODA>2.3.CO;2.Google Scholar
Uhlík, P. Šucha, V. Elsass, F. and Čaplovičová, M., (2000) High-resolution transmission electron microscopy of mixed-layer clays dispersed in PVP-10: anew technique to distinguish detrital and authigenic illitic material Clay Minerals 35 781789 10.1180/000985500547232.Google Scholar
Vass, D. and Čverčko, J., (1985) Neogene Lithostratigraphic Units in the East-Slovakian Lowland Geologické Práce, Správy 82 111126 (in Slovak).Google Scholar
Vass, D. Kováč, M. Konečný, V. and Lexa, J., (1988) Molasse basins and volcanic activity in West Carpathian Neogene — its evolution and geodynamic character Geologica Carpathica 39 539562.Google Scholar
Whitney, G., (1990) Role of water in the smectite-to-illite reaction Clays and Clay Minerals 38 343350 10.1346/CCMN.1990.0380402.Google Scholar
Whitney, G. and Northrop, H.R., (1988) Experimental investigation of the smectite to illite reaction: dual reaction mechanisms and oxygen-isotope systematics American Mineralogist 73 7790.Google Scholar