Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T22:26:38.902Z Has data issue: false hasContentIssue false

Smectite in Marine Quick-Clays of Japan

Published online by Cambridge University Press:  02 April 2024

Kazuhiko Egashira
Affiliation:
Faculty of Agriculture, Kyushu University 46, Fukuoka 812, Japan
Masami Ohtsubo
Affiliation:
Faculty of Agriculture, Kyushu University 46, Fukuoka 812, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Clayey sediments of marine origin having sensitivities (ratio of undisturbed to remolded shear strength) as high as 1000 at a reduced salt concentration are found around Ariake Bay, Kyushu, Japan. The clay fraction of the sediments contains smectite as a principal mineral (33–42%) in contrast to the illitic composition of most previously described quick-clays. However, this smectite is a low-swelling type, and the Na-form expands only to about the same extent as the Ca-form and gives a sediment volume almost equal to that of the Ca-clay. This low-swelling smectite appears to consist of packets of unit layers even after saturation with Na, and thus reacts like the kaolinite or illite of conventional quick-clays.

Резюме

Резюме

Глиняные осадки морского происхождения, имеющие чувствительности (отношение несмущенной и смущенной прочностей при срезе) такие большие как 1000 при уменьшенной концентрации соли, находятся в районе бухты Ариаке, Кыусху, Япония. Глинистая фракция осадков содержит смектит как основной минерал 33-42%) в противоположность к иллитовому составу большинства ранее описанных зыбучих глин. Однако, этот смектит является мало-набухающего типа, и Nа-форма расширяется только до примерно такого же самого уровня как Са-форма и приводит к почти равному объему осадков как и Са-глина. Кажется, что этот мало-набухающий смектит состоит из пакетов элементарных слоев даже после насыщения натрием, и тогда он реагирует как каолинит либо иллит обычных зыбучих глин. [Е.С.]

Résumé

Résumé

Des sédiments argileux d'origine marine ayant des sensitivités (proportion de la force non dérangée à la force remoulée) atteignant 1000 à une concentration de sel réduite sont trouvés autour de la Baie Ariake, Kyushu, Japon. La fraction argile des sédiments contient de la smectite comme minéral principal (33–42%) contrairement à la composition illitique de la plupart des argiles rapides décrits précédemment. Cette smectite est cependant du type à bas gonflement, et la forme-Na s’épand seulement approximativement autant que la forme-Ca et donne un volume de sédiment presqu’égal à celui de l'argile-Ca. Cette smectite à bas gonflement semble consister de paquets de couches unitaires même après avoir été saturée de Na, et par conséquent elle réagit comme la kaolinite ou l'illite d'argiles rapides conventionnels. [D.J.]

Resümee

Resümee

Tonige Sedimente mariner Entstehung, die bei reduzierter Salzkonzentration Sensitivitäten (Verhältnis der ungestöten zur Scherfestigkeit der durchkneteten Probe) von etwa 1000 haben, wurden um die Ariake Bay, Kyushu, Japan, gefunden. Die Tonfraktion der Sedimente enthält Smektit als häufigstes Mineral (33–42%) im Gegensatz zur illitischen Zusammensetzung der meisten früher beschriebenen Quick-tone. Dieser Smektit quillt jedoch nur wenig, und die Na-Form quillt etwa nur so viel wie die Ca-Form und ergibt ein Sedimentvolumen, das dem von Ca-Tonen entspricht. Dieser schlechtquellende Smektit scheint aus Paketen von Einzellagen zu bestehen, sogar nach der Sättigung mit Na, und verhält sich daher wie der Kaolinit oder Illit von herkömmlichen Quicktonen. [U.W.]

Type
Research Article
Copyright
Copyright © 1982, The Clay Minerals Society

References

Berry, R. W. and Jørgensen, P., 1971 Grain size, mineralogy and chemistry of a quick-clay sample from the Ullensaker slide, Norway Eng. Geol. 5 7384.CrossRefGoogle Scholar
Bjerrum, L., 1954 Geotechnical properties of Norwegian marine clays Geotechnique 4 4969.CrossRefGoogle Scholar
Brydon, J. E. and Patry, L. M., 1961 Mineralogy of Cham-plain Sea sediments and a Rideau Clay soil profile Can. J. Soil Sci. 41 169181.CrossRefGoogle Scholar
Egashira, K., 1981 Relationship between mineral composition and surface area of soil clays J. Sci. Soil Manure, Japan 52 225229 (in Japanese).Google Scholar
Egashira, K., Kajiyama, T. and Arimizu, N., 1977 Effects of the Na2S2O4-NaHCO3-Na citrate and 2% Na2CO3 treatments on the surface area of allophane and imogolite N en-do Kagaku 17 3847.Google Scholar
Egashira, K. and Ohtsubo, M., 1981 Low-swelling smectite in a recent marine mud of Ariake Bay Soil Sci. Plant Nutr. 27 205211.CrossRefGoogle Scholar
Eltantawy, I. M. and Arnold, P. W., 1973 Reappraisal of eth-ylene glycol mono-ethyl ether (EGME) method for surface area estimations of clays J. Soil Sci. 24 232238.CrossRefGoogle Scholar
Rosenqvist, I. Th., 1953 Considerations on the sensitivity of Norwegian quick-clays Geotechnique 3 195200.CrossRefGoogle Scholar
Rosenqvist, I. Th. and Swineford, A., 1962 The influence of physico-chemical factors upon the mechanical properties of clays Clays and Clay Minerals, Proc. 9th Natl. Conf., West Lafayette, Indiana, 1960 New York Pergamon Press 1227.Google Scholar
Sasaki, S., 1974 Clay mineralogy and genetic environment of Kitami clay Nendo Kagaku 14 5870 (in Japanese with English summary).Google Scholar
Smalley, I. J., Ross, C. W. and Whitton, J. S., 1980 Clays from New Zealand support the inactive partiele theory of soil sensitivity Nature 288 576577.CrossRefGoogle Scholar
Soderman, L. G. and Quigley, R. M., 1965 Geotechnical properties of three Ontario clays Can. Geotech. J. 2 167189.CrossRefGoogle Scholar
Torrance, J. K., 1974 A laboratory investigation of the effect of leaching on the compressibility and shear strength of Norwegian marine clays Geotechnique 24 155173.CrossRefGoogle Scholar
Torrance, J. K., 1975 On the role of chemistry in the devel-opment and behavior of the sensitive marine clays of Canada and Scandinavia Can. Geotech. J. 12 326335.CrossRefGoogle Scholar
Wada, K., Harada, Y. and Heller, L., 1969 Effects of salt concentration and cation species on the measured cation-exchange capacity of soils and clays Proc. Int. Clay Conf., Tokyo, 1969, Vol. 1 Jerusalem Israel Univ. Press 561571.Google Scholar