Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T01:02:12.833Z Has data issue: false hasContentIssue false

Sintering of Montomorillonites Pillared by Hydroxy-Aluminum Species

Published online by Cambridge University Press:  02 April 2024

D. Tichit
Affiliation:
Laboratoire de Chimie Organique Physique et Cinétique Chimique Appliquées, UA 418 CNRS, ENSCM 8, rue Ecole Normale, 34075 Montpellier Cedex, France
F. Fajula
Affiliation:
Laboratoire de Chimie Organique Physique et Cinétique Chimique Appliquées, UA 418 CNRS, ENSCM 8, rue Ecole Normale, 34075 Montpellier Cedex, France
F. Figueras
Affiliation:
Laboratoire de Chimie Organique Physique et Cinétique Chimique Appliquées, UA 418 CNRS, ENSCM 8, rue Ecole Normale, 34075 Montpellier Cedex, France
B. Ducourant
Affiliation:
Laboratoire des Acides Minéraux, USTL-UA 79, Place Eugène Bataillon, 34060 Montpellier Cedex, France
G. Mascherpa
Affiliation:
Laboratoire des Acides Minéraux, USTL-UA 79, Place Eugène Bataillon, 34060 Montpellier Cedex, France
C. Gueguen
Affiliation:
Centre de Recherches ELF-Solaize, Saint Symphorien d'Ozon, France
J. Bousquet
Affiliation:
Centre de Recherches ELF-Solaize, Saint Symphorien d'Ozon, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The sintering of montmorillonites pillared by hydroxy-Al species was investigated by several techniques. The change of the microporosity of the pillared interlayer clay with temperature shows that sintering was mainly due to the loss of microporosity. On calcination of the parent clay at 760°C, the X-ray powder diffraction pattern did not change; the 060 line shifted only slightly from 8.988 to 9.017 Å. The infrared (IR) spectrum suggested some dehydroxylation, but the structure appears to have been preserved. On calcination of the pillared clay at >700°C, the intensity of the 001 line decreased steadily, the 060 line broadened, and the b parameter decreased slightly from 8.988 to 8.928 Å. Fe3+ ions apparently occupied only one site after calcination at 300°C and two sites after calcination at 700°C. Smaller isomer shifts and higher quadrupole splittings in the Mössbauer spectra suggest that calcination produced more covalent bonding of Fe3+ and a highly distorted structure. The IR spectrum was significantly modified by calcination of the sample, and the 935- and 1125-cm−1 bands disappeared and the 1035-cm−1 band broadened. These results suggest that at <700°C the pillars sintered and that the clay progressively decomposed at >750°C. The pillaring-induced decrease of thermal stability of the clay was likely due to the introduction of protons during the first step of the preparation. The thermal stability of these Al-pillared interlayer complexes is comparable to that reported for hydroxy-silicoaluminum montmorillonites and fluorhectorites.

Résumé

Résumé

Le frittage de montmorillonites pontées par des polycations aluminiques a été étudié par différentes techniques. Les variations de la porosité de l'argile pontée en fonction de la température de calcination sous air sec montrent que le frittage est principalement dû à la disparition de la microporosité. Le spectre de rayons X de l'argile initiale est préservé après calcination à 760°C, la seule modification notable étant un léger déplacement de la raie 060 de 8,988 à 9,017 Å; le spectre infrarouge révèle un début de deshydroxylation, mais la structure reste intacte. La calcination de l'argile pontée provoque une diminution régulière de l'intensité de la raie 001 et un élargissement de la raie 060 au dessus de 700°C, avec une légère contraction du paramètre b de 8,988 à 8,928 Å. Les ions Fe3+ occupent un seul type de site après calcination à 300°C et deux sites différents après calcination à 700°C. Après calcination, le déplacement chimique relatif à ces ions diminue et l’écartement quadrupolaire augmente, ce qui suggère des liaisons plus covalentes avec le réseau et une structure très désordonnée. Le spectre IR est également fortement modifié par la calcination avec la disparition des bandes de vibration à 935 et 1125 cm−1 et l’élargissement de la bande à 1035 cm−1. Ces résultats sont interprétés par un frittage des piliers aluminiques pour T <700°C et une destruction progressive du feuillet de l'argile au dessus de 750°C. La baisse de stabilité thermique de l'argile induite par le pontage est attribuée à l'introduction de protons au cours de la première étape de la préparation. La stabilité thermique de ces argiles pontées par des polycations aluminium est comparable à celle des montmorillonites et des fluorhectorites pontées par des silico-aluminates.

Type
Research Article
Copyright
Copyright © 1988, The Clay Minerals Society

References

Ames, L. B. and Sand, L. B., 1958 Factors affecting maximum hydrothermal stability in montmorillonites Amer. Mineral. 43 641648.Google Scholar
Barrett, E. P., Joyner, L. G. and Halenda, P. P., 1951 The determination of pore volume and area distributions in porous substances. Computations from nitrogen isotherms J. Amer. Chem. Soc. 73 373380.CrossRefGoogle Scholar
Bartley, G. J. J. and Burch, R., 1985 Zr-containing pillared interlayer clays. Part III. Influence of method of preparation on the thermal and hydrothermal stability: Appl Catal. 19 175186.Google Scholar
Jacobs, P., Poncelet, G. and Schutz, A. (1982) Procédé de préparation d’argiles pontées, argiles préparées par ce procédé et applications desdites argiles: Eur. Patent 0073 718, 24 pp.Google Scholar
Lahav, N., Shani, U. and Shabtai, J., 1978 Cross-linked smectites. I—Synthesis and properties of hydroxy-alumi-num-montmorillonite Clays & Clay Minerals 26 107115.CrossRefGoogle Scholar
U.S. Patent 1985 4 510.Google Scholar
Occelli, M. L., 1983 Catalytic cracking with an interlayered clay—A two dimensional molecular sieve Ind. Eng. Chem. Prod. Res. Devel. 22 553559.CrossRefGoogle Scholar
Occelli, M. L. and Tindwa, R. M., 1983 Physicochemical properties of montmorillonite interlayered with cationic oxyaluminum pillars Clays & Clay Minerals 31 2228.CrossRefGoogle Scholar
Pinnavaia, T. J., Landau, S. D., Tzou, M. S., Johnson, I. D. and Lipsicas, M., 1985 Layer cross-linking in pillared clays J. Amer. Chem. Soc. 107 72227224.CrossRefGoogle Scholar
Pinnavaia, T. J., Tzou, M. S. and Landau, S. D., 1985 New chromia pillared clay catalysts J. Amer. Chem. Soc. 107 47834785.CrossRefGoogle Scholar
Plee, D., Borg, F., Gatineau, L. and Fripiat, J. J., 1985 High-resolution solid state 27A1 and 29Si nuclear magnetic resonance study of pillared clays J. Amer. Chem. Soc. 107 23622369.CrossRefGoogle Scholar
Rozenson, I. and Heller-Kallai, L., 1977 Mössbauer spectra of dioctahedral smectites Clays & Clay Minerals 25 94101.CrossRefGoogle Scholar
Ruebenbauer, K. and Birchall, T., 1979 A computer programme for the evaluation of Mössbauer data Hyp. Interact. 7 125133.CrossRefGoogle Scholar
Shabtai, J. and Lahav, N., 1980 Cross-linked montmorillonite molecular sieves U.S. Patent 4 216 188.Google Scholar
Shabtai, J., Lazar, R., Oblad, A. G., Seiyama, T. and Tanabe, K., 1980 Acidic forms of cross-linked smectites. A novel type of cracking catalysts Proc. 7th Int. Cong. Catal., Tokyo, 1980 Tokyo Kodansha Elsevier 828840.Google Scholar
Sterte, J., 1986 Synthesis and properties of titanium oxide cross-linked montmorillonite Clays & Clay Minerals 34 658664.CrossRefGoogle Scholar
Sterte, J. and Shabtai, J., 1987 Cross-linked smectites. V. Synthesis and properties of hydroxy-silicoaluminum montmorillonites and fluorhectorites Clays & Clay Minerals 35 429439.CrossRefGoogle Scholar
Stubican, V. and Roy, R., 1961 A new approach to assignment of infra-red absorption bands in layer-structure silicates Z. Kristallogr. 115 200214.CrossRefGoogle Scholar
Stubican, V. and Roy, R., 1961 Isomorphous substitution and infra-red spectra of the layer lattice silicates Amer. Mineral. 46 3251.Google Scholar
Tichit, D., Fajula, F., Figueras, F., Bousquet, J., Gueguen, C., Imelik, B., Naccache, C., Coudurier, G., Taarit, Y. B. and Vedrine, J. C., 1985 Thermal stability and acidity of Al3+ cross-linked smectites Studies in Surface Science and Catalysis, Vol. 20 Amsterdam Elsevier 351360.Google Scholar
Tichit, D., Fajula, F., Figueras, F., Gueguen, C. and Bousquet, J., 1988 Catalytic properties of Al-pillared clays in the cracking of heavy fuels Int. Cong. Catal. (in press).Google Scholar
Tokarz, M. and Shabtai, J., 1985 Cross-linked smectites. IV. Preparation and properties of hydroxyaluminum-pillared Ce- and La-montmorillonites and fluorinated NH4-montmorillonites Clays & Clay Minerals 33 8998.CrossRefGoogle Scholar
U.S. Patent 1979 4 176.Google Scholar
Yamanaka, S. and Brindley, G. W., 1978 Hydroxy-nickel interlayering in montmorillonite by titration method Clays & Clay Minerals 26 2124.CrossRefGoogle Scholar
Yamanaka, S., Nishihara, T. and Hattori, M., 1986 Preparation and properties of TiO2 pillar interlayered clay Preprints of poster papers, 7th Int. Zeol. Conf., Tokyo, 1986 Tokyo Japan Assoc, of Zeolite 2930.Google Scholar