Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-20T18:32:00.603Z Has data issue: false hasContentIssue false

Short-term hydrothermal effects on the ‘crystallinities’ of illite and chlorite in the footwall of the Aachen-Faille du Midi thrust fault — First results of the RWTH-1 drilling project

Published online by Cambridge University Press:  01 January 2024

Sven Sindern*
Affiliation:
Institute of Mineralogy and Economic Geology, RWTH Aachen University, Wüllnerstrasse 2, 52056 Aachen, Germany
Helge Stanjek
Affiliation:
Clay and Interface Mineralogy, RWTH Aachen University, Wüllnerstrasse 2, 52056 Aachen, Germany
Christoph Hilgers
Affiliation:
Lehr und Forschungsgebiet Geologie und Endogene Dynamik, RWTH Aachen University, 52056 Aachen, Germany
Yvonne Etoundi
Affiliation:
Ministère de l’Industrie, des Mines et du Développment Technologie - CAPM - BP. 15620, Yaoundé, Cameroon
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Investigation of material from three core sections of the RWTH-1 drill-hole in the Wurm syncline of Aachen, Germany, shows mineralogical and structural evidence of intensive hydrothermal activity in the footwall of the Aachen thrust. Mineral and microstructural data indicate minimum temperatures of 200–250°C. CISillite 001 values of 0.45–0.61 (Δ°2θ) and insignificant amounts of smectite indicate a late diagenetic grade for illite pointing to temperatures <200°C. Chlorite, mainly formed in veins and cleavage planes, has CISchlorite 002 values between 0.35 and 0.26 (Δ°2θ) which only in part point to anchizonal grade. In contrast to these illite and chlorite data, maximum temperatures up to 370°C can be expected based on comparison with recently published fluid inclusion and mineral thermometric data. Illite is neither significantly affected by the hydrothermal event nor by deformation, and mirrors the burial history of the Wurm syncline.

Chlorite grew syntectonically as is shown by bent and predominantly stretched sheets which do not, however, have deformed structures. Syntectonic hydrothermal growth by incipient nucleation along crystal edges limited domainsize and thus also the CISchlorite 002 values. The hydrothermal event did not last long enough to allow further crystal growth. The retarded CISillite and CISchlorite grades can be best explained by limited duration(probably <5000 y) of the hydrothermal event which for a short time reached epithermal temperatures. The hydrothermal fluid flow was caused by dewatering of sedimentary rocks during thrusting and tectonic thickening within the Variscan orogen and it was focused along the Aachen thrust which represents the frontal Variscan thrust.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

References

Árkai, P. Merriman, R.J. Roberts, B. Peacor, D. and Tóth, M., (1996) Crystallinity, crystallite size and lattice strain of illite, muscovite and chlorite: comparison of XRD and TEM data for diagenetic to epizonal pelites European Journal of Mineralogy 8 11191137.CrossRefGoogle Scholar
Árkai, P. Balogh, K. and Frey, M., (1997) The effects of tectonic strain on crystallinity, apparent mean crystallite size and lattice strain of phyllosilicates in low temperature metamorphic rocks. A case study from the Glarus over-thrust, Sitzerland Schweizerische Mineralogische und Petrographische Mitteilungen 77 2740.Google Scholar
Árkai, P. Livi, K.J.T. Frey, M. Brukner-Wein, A. and Sajgo, C., (2004) White micas with mixed interlayer occupancy: a possible cause of pitfalls inapplying illite Kübler index (‘crystallinity’) for the determination of metamorphic grade European Journal of Mineralogy 16 469482.CrossRefGoogle Scholar
Babinecz, W., (1962) Das Inkohlungsbild des Aachener Steinkohlengebirges, dargestellt im Niveau des Flözes Großlangenberg Forschritte Geologie Rheinland und Westfalen 3 679686.Google Scholar
Battaglia, S. Leoni, L. and Sartori, F., (2004) The Kübler index inlate diagenetic to low-grade metamorphic pelites: A critical comparisonof data from 10 Å and 5 Å peaks Clays and Clay Minerals 52 85105.CrossRefGoogle Scholar
Behr, H.J. Gerler, J. Hein, U.F. and Reutel, C.J., (1993) Tectonic brines und basement brines in den mitteleuropäischen Varisziden: Herkunft, metallogenetische Bedeutung und geologische Aktivität Göttinger Arbeiten zur Geologie und Paläontologie 58 328.Google Scholar
Bertaut, E.F., (1950) Raies de Debye-Scherrer et répartition des dimensions des domaines de Bragg dans les poudres polycristallines Acta Crystallographica 3 1418.CrossRefGoogle Scholar
Brindley, G.W., Brindley, G.W. and Brown, G., (1980) Order-disorder in clay mineral structures Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 125196.CrossRefGoogle Scholar
Chatziliadou, M. Sindern, S. Hilgers, C. and Kramm, U., (2005) Spurenelementverteilung in Gesteinen der RWTH-1 Bohrung, Aachen Berichte der Deutschen Mineralogischen Gesellschaft, Beih. Z. European Journal of Mineralogy 17 22.Google Scholar
Clauer, N. Liewig, N. Pierret, M.-C. and Toulkeridis, T., (2003) Crystallization conditions of fundamental particles from mixed-layer illite-smectite of bentonites based on isotopic data (K-Ar, Rb-Sr and δ18O Clays and Clay Minerals 51 664674.CrossRefGoogle Scholar
Deer, W.A. Howie, R.A. and Zussmann, J., (1992) An Introduction to the Rock-forming Minerals 2 Essex, UK Longman 696 pp.Google Scholar
Drits, V.A. Lindgreen, H. and Salyn, A.L., (1997) Determination of the content and distribution of fixed ammonium in illite-smectite by X-ray diffraction: Applicationto North Sea illite-smectite American Mineralogist 82 7987.CrossRefGoogle Scholar
Eberl, D.D. and Velde, B., (1989) Beyond the Kübler index Clay Minerals 24 571577.CrossRefGoogle Scholar
Eberl, D.D. Środoń, J. Lee, M. Nadeau, P.H. and Northrop, H.R., (1987) Sericite from the Silvertoncaldera, Colorado: correlation among structure, composition, origin, and particle size American Mineralogist 72 914934.Google Scholar
Essene, E.J. and Peacor, D.R., (1995) Clay mineral thermometry — a critical perspective Clays and Clay Minerals 43 540553.CrossRefGoogle Scholar
Etoundi, Y., (2006) Tonmineralogische Untersuchung an Material der RWTH-1 Bohrung Gernmany Institute of Mineralogy and Economic Geology, RWTH Aachen University 61 pp.Google Scholar
Fielitz, W. and Mansy, J.L., (1999) Pre- and synorogenic burial metamorphism in the Ardenne and neighbouring areas (Rhenohercynian zone, central European Variscides) Tectonophysics 309 227256.CrossRefGoogle Scholar
Flehmig, W., Martinand, H. and Eder, F.W., (1983) Mineral composition of pelitic sediments in the Rhenohercynian zone Intracontinental Fold Belts Berlin, Heidelberg, New York Springer Verlag 257265.CrossRefGoogle Scholar
Friedrich, G. Germann, A. and Jochum, J., (1993) Schichtgebundene Pb-Zn-Vorkommen in klastischen Sedimenten vom Typ Maubach-Mechernich — Lagerstättenbildung durch intraformationale Prozesse Mitteilungen der Österreichischen Mineralogischen Gesellschaft 138 93106.Google Scholar
Ge, S. and Garven, G., (1992) Hydromechanical modeling of tectonically driven groundwater flow with application to the Arkoma foreland basin Journal of Geophysical Research 97 91199144.CrossRefGoogle Scholar
Glasmacher, U.A. (1995) Variszische und postvariszische Fluidsysteme. Pp 140 in: KW-relevante Eigenschaften potentieller Mutter- und Speichergesteine am Nordrand des Linksrheinischen Schiefergebirges (Walter, R., Glasmacher, U. and Wolf, M., editors). RWTH-Aachen, BMBF Forschungsprojekt 032 6804 A 5, Teil 5.Google Scholar
Glasmacher, U.A. Tschernoster, R. Clauer, N. and Spaeth, G., (2001) K-Ar dating of magmatic sericite crystallites for determination of cooling paths of metamorphic overprints Chemical Geology 175 673687.CrossRefGoogle Scholar
Guggenheim, S. Bain, D.C. Bergaya, F. Brigatti, M.F. Drits, V.A. Eberl, D.D. Formoso, M.L.L. Galán, E. Merriman, R.J. Peacor, D.R. Stanjek, H. and Watanabe, T., (2002) Report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature committee for 2001: Order, disorder and crystallinity in phyllosilicates and the use of the ‘Crystallinity Index’ Clay Minerals 37 389393.CrossRefGoogle Scholar
Guinier, A., (1963) X-ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies San Francisco, USA Freeman and Company 387 pp.Google Scholar
Higashi, S., (1982) Tobelite, a new ammonium dioctahedral mica Mineralogical Journal 11 138146.CrossRefGoogle Scholar
Hilgers, C., Büker, C. and Urai, J.L. (2006) Fossil overpressure compartments? A case study from the Eifel area and some general aspects. In: TSK (Symposium Tektonik. Strukturgeologie Kristallingeologie) 11 (Gudmundsson, G., editor). Göttingen.Google Scholar
Hollmann, E.G. (1997) Der Variszische Vorlandüberschiebungsgürtel der OstbelgischenArdennen — Einbilanziertes Modell. Aachener Geowissenschaftliche Beiträge, 25, 235 pp.Google Scholar
Hower, J. Eslinger, E.V. Hower, M.E. and Perry, E.A., (1976) Mechanisms of burial metamorphism of argillaceous sediments: Mineralogical and chemical evidence Geological Society of America Bulletin 87 725737.2.0.CO;2>CrossRefGoogle Scholar
Inoue, A. and Velde, B., (1995) Formation of clay minerals in hydrothermal environments Origin and Mineralogy of Clay — Clays and the Environment Berlin Springer 268329.CrossRefGoogle Scholar
Jaboyedoff, M. Bussy, F. Kübler, B. and Thelin, P.h., (2001) Illite ‘crystallinity’ revisited Clays and Clay Minerals 49 156167.CrossRefGoogle Scholar
Kisch, H.J., (1990) Calibrationof the anchizone: A critical comparison of illite’ crystallinity’ scales used for definition Journal of Metamorphic Geology 9 665670.CrossRefGoogle Scholar
Klug, H.P. and Alexander, L.E., (1974) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials New York John Wiley and Sons 966 pp.Google Scholar
Knapp, G., (1980) Erläuterungen zur Geologischen Karte der nördlichen Eifel, 1: 100000,2. Auflage Krefeld Geologisches Landesamt Nordrhein Westfalen 152 pp.Google Scholar
Krooss, B.M. Friberg, L. Gensterblum, Y. Hollenstein, J. Prinz, D. and Littke, R., (2005) Investigation of the pyrolytic liberation of molecular nitrogen from Palaeozoic sedimentary rocks International Journal of Earth Sciences 94 10231038.CrossRefGoogle Scholar
Krumm, S., (1992) Illitkristallinität als Indikator schwacher Metamorphose — Methodische Untersuchungen, regionale Anwendungen und Vergleiche mit anderen Parametern Erlanger Geologische Abhandlungen 120 175.Google Scholar
Kübler, B., (1964) Les argiles, indicateurs de métamorphisme Revue de l’Institut Francais du Petrole 19 10931112.Google Scholar
Kübler, B., (1968) Evaluation quantitative du métamorphisme par la cristallinité de l’illite Bulletin du Centre de Recherches de Pau-SNPA 2 385397.Google Scholar
Kübler, B., (1990) “Cristallinité” de l’illite et mixed-layers: brève révision Schweizerische Mineralogische und Petrographische Mitteilungen 70 8993.Google Scholar
Kübler, B. and Jaboyedoff, M., (2000) Illite crystallinity Comptes Rendu de l’Academie Scientifique de Paris, Science de la Terre et des Planètes 331 7589.Google Scholar
Langford, J.I. and Wilson, A.J.C., (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size Journal of Applied Crystallography 11 102113.CrossRefGoogle Scholar
Langford, J.I. Louer, D. and Scardi, P., (2000) Effect of a crystallite size distribution on X-ray diffraction line profiles and whole-powder-pattern fitting Journal of Applied Crystallography 33 964974.CrossRefGoogle Scholar
Lanson, B. and Kübler, B., (1994) Experimental determination of the coherent scattering domainsize distributionof natural mica-like phases with the Warren-Averbach technique Clays and Clay Minerals 42 489494.CrossRefGoogle Scholar
Lögering, M.J. Kolb, J. and Meyer, F.M., (2005) Fluidsysteme in hydrothermalen Gängen der Aachener Geothermie-Bohrung Berichte der Deutschen Mineralogischen Gesellschaft, Beih. Z. European Journal of Mineralogy 17 84.Google Scholar
Lögering, M.J. Kolb, J. Meyer, F.M. and Schwarzbauer, J., (2006) Paläofluide instörungskontrollierten Bruchsystemen der Aachener Geothermie-Bohrung Abstract, TSK Göttingen, Germany März 2224.Google Scholar
Lundershausen, S., Oesterreich, B., Ribbert, K.H. and Wrede, V. (2005) Geothermal well ‘RWTH-1’, Aachen — Technical aspects and first geological results. Abstracts of the Meuse-Rhine Euregio Geologists Meeting: Alden Biesen (Belgian Limbourg), 20–21 May 2005.Google Scholar
Lünenschloss, B. (1998) Modellierung der Temperatur- und Fluidgeschichte an der variszischen Front (Verviers-Synklinorium und Nordeifel). Scientific Technical Report STR98/07 Geoforschungszentrum Potsdam, 132 pp.Google Scholar
Lünenschloss, B. Bayer, U. and Muchez, P.h., (1997) Coalification anomalies induced by fluid flow at the Variscan thrust front: a numerical model of the palaeotemperature field Geologie en Mijnbouw 76 271275.CrossRefGoogle Scholar
Maynard, J.B. Elswick, E.R. and Hower, J.C., (2001) Reflectance of dispersed vitrinite in shales hosting Pb-Zn-Cu ore deposits in western Cuba: comparison with clay crystallinity International Journal of Coal Geology 47 161170.CrossRefGoogle Scholar
Mering, J., (1949) L’interférence de rayons X dans les systems a stratification désordonnée Acta Crystallographica 2 371377.CrossRefGoogle Scholar
Merriman, R.J., (2005) Clay minerals and sedimentary basin history European Journal of Mineralogy 17 720.CrossRefGoogle Scholar
Merriman, R.J. Frey, M., Frey, M. and Robinson, D., (1999) Patterns of very low-grade metamorphism inmetapelitic rocks Low-grade Metamorphism Oxford, UK Blackwell Sciences 61107.Google Scholar
Merriman, R.J. Peacor, D.R., Frey, M. and Robinson, D., (1999) Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress Low-grade Metamorphism Oxford, UK Blackwell Sciences 1060.Google Scholar
Mingram, B. Hoth, P. Lüders, V. and Halrov, D., (2005) The significance of fixed ammonium in Palaeozoic sediments for the generation of nitrogen-rich natural gases in the North German Basin International Journal of Earth Sciences 94 10101022.CrossRefGoogle Scholar
Moore, J.C., (1989) Tectonics and hydrogeology of accretionary prisms: role of the décollement zone Journal of Structural Geology 11 95106.CrossRefGoogle Scholar
Muchez, P.h. Slobodnik, M. Viaene, W. and Keppens, E., (1994) Mississippi Valley-type Pb-Zn mineralization in eastern Belgium: Indications for gravity-driven flow Geology 22 10111014.2.3.CO;2>CrossRefGoogle Scholar
Nierhoff, R., (1994) Metamorphose-Entwicklung im Linksrheinischen Schiefergebirge: Metamorphosegrad und —verteilung sowie Metamorphosealter nach K-Ar-Datierungen Aachener Geowissenschaftliche Beiträge 3 1159.Google Scholar
Nieto, F., (2002) Characterization of coexisting NH4- and K-micas invery low-grade metapelites American Mineralogist 87 205216.CrossRefGoogle Scholar
Oliver, J., (1986) Fluids expelled tectonically from orogenic belts: Their role in hydrocarbon migration and other geological phenomena Geology 14 99102.2.0.CO;2>CrossRefGoogle Scholar
Oncken, O., (1989) Geometrie, Deformationsmechanismen und Paläospannungsgeschichte großer Bewegungszonen in der höherenKruste (Rheinisches Schiefergebirge) Geotektonische Forschungen 73 1215.Google Scholar
Oncken, O. von Winterfeld, C. and Dittmar, U., (1999) Accretion of a passive margin: The late Paleozoic Rhenohercynian fold and thrust belt (Middle European Variscides) Tectonics 18 7591.CrossRefGoogle Scholar
Österreich, B., Ribbert, K.H. and Wrede, V. (2005) Erste Ergebnisse zur biostratigrafischen und tektonischen Einordnung der Bohrung RWTH-1. Unpublished report, GD-NRW, 2005.Google Scholar
Pironon, J. Pelletier, M. de Donato, P. and Mosser-Ruck, R., (2003) Characterization of smectite and illite by FTIR spectroscopy of interlayer NH4+ cations Clay Minerals 38 201211.CrossRefGoogle Scholar
Pollastro, R.M., (1993) Considerations of the illite-smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippianage Clays and Clay Minerals 41 119133.CrossRefGoogle Scholar
Rao, S. and Houska, C.R., (1986) X-ray diffraction profiles described by refined analytical functions Acta Crystallographica A42 1419.CrossRefGoogle Scholar
Redecke, P. (1992) Zur Geochemie und Genese variszischer und postvariszischer Buntmetallmineralisation in der Nordeifel und der Niederrheinischen Bucht. Mitteilungen zur Mineralogie und Lagerstättenkunde, 41, Aachen, 152 pp.Google Scholar
Reynolds, R.C. Jr. Distefano, M.P. and Lahann, R.W., (1992) Randomly interstratified serpentine/chlorite: Its detection and quantification by powder X-ray diffraction methods Clays and Clay Minerals 40 262267.CrossRefGoogle Scholar
Robinson, D. Merriman, R.J., Frey, M. and Robinson, D., (1999) Low-temperature metamorphism: anoverview Low-grade Metamorphism Oxford Blackwell Sciences 19.Google Scholar
Rottke, W. and Stroink, L., (1999) Die Genese devonischer Vorlandsedimente am NW-Rand des Rheinischen Massivs — Zement- und Porenraumentwicklung Zeitschrift der deutschen Gesellschaft für Geowissenschaften 150 471491.CrossRefGoogle Scholar
Scherrer, P., (1918) Bestimmung der Größe und der inneren Struktur vonKolloidteilchenmittels Röntgenstrahlen Göttinger Nachrichten 2 98100.Google Scholar
Schneider, J., Haack, U., Hein, U.F. and Germann, A. (1999) Direct Rb/Sr dating of sandstone-hosted sphalerites from stratabound Pb-Zn deposits in the northern Eifel, NW Rhenish Massif, Germany. Pp. 12871290 in: Mineral Deposits: Processes to Processing. Proceedings of the 5th Biennial. SGA Meeting and the 10th Quadrennial IAGOD Symposium (Stanley, C.J., editor). London, 22–25 August, 1999.Google Scholar
Smith, R.E. and Wiltschko, D.V., (1996) Generation and maintenance of abnormal fluid pressures beneath a ramping thrust sheet: isotropic permeability experiments Journal of Structural Geology 18 951970.CrossRefGoogle Scholar
Środoń, J. Elsass, F. McHardy, W.J. and Morgan, D.J., (1992) Chemistry of illite-smectite inferred from TEM measurements of fundamental particles Clay Minerals 27 137158.CrossRefGoogle Scholar
Środoń, J. Morgan, D.J. Eslinger, E.V. Eberl, D.D. and Karlinger, M.R., (1986) Chemistry of illite/smectite and end member illite Clays and Clay Minerals 34 368378.CrossRefGoogle Scholar
Stanjek, H. and Häusler, W., (2000) Quantifizierung silikatischer Tonminerale im Textur- und Pulverpräparat mit MacClayFit Berichte der Deutschen Ton- und Tonmineralgruppe e.V 7 256265.Google Scholar
Steingrobe, B., (1990) Fazieseinheiten aus dem Aachen-Erkelenzer Oberkarbonvorkommen unter besonderer Berücksichtigung des Inde-Synklinoriums Germany Dissertation RWTH-Aachen 325 pp.Google Scholar
Šucha, V. Elsass, F. Eberl, D.D. Kuchta, L. Madejová, J. Gates, W.P. and Komadel, P., (1998) Hydrothermal synthesis of ammonium illite American Mineralogist 83 5867.CrossRefGoogle Scholar
Teichmüller, M. and Teichmüller, R., (1979) Ein Inkohlungsprofil entlang der linksrheinischen Geotraverse von Schleiden nach Aachen und die Inkohlung inder Nord-Süd-Zone der Eifel Forschritte Geologie Rheinland und Westfalen 27 323355.Google Scholar
Thompson, P. Cox, D.E. and Hastings, J.B., (1987) Rietveld refinement of Debye-Scherrer synchroton X-ray data of Al2O3 Journal of Applied Crystallography 20 7983.CrossRefGoogle Scholar
Tschernoster, R., Glasmacher, U., Spaeth, G. and Clauer, N. (1995) De K-Ar- Datierungen zur Abkühlungsgeschichte ausgewählter Magmatite und Metapelite aus dem Stavelot Venn Massiv. Pp. 120 in: KW-relevante Eigenschaften potentieller Mutter- und Speichergesteine am Nordrand des Linksrheinischen Schiefergebirges (Walter, R., Glasmacher, U. and Wolf, M., editors). RWTH-Aachen, BMBF Forschungsprojekt 032 6804 A 5, Teil 4.Google Scholar
Velde, B. and Lanson, B., (1993) Comparison of I/S transformation and maturity of organic matter at elevated temperatures Clays and Clay Minerals 41 178183.CrossRefGoogle Scholar
Vogtmann-Becker, J., (1990) Mobilisation und Austausch von Elementen durch Regionalmetamorphose in kambro-ordovizischen Sedimentgesteinen des Stavelot-Venn-Massivs Mitteilungen zur Mineralogie und Lagerstättenlehre 34 1179.Google Scholar
Von Winterfeld, C.-H. (1994) Variszische Deckentektonik und devonische Beckengeometrie der Nordeifel — Einquantitatives Modell. Aachener Geowissenschaftliche Beiträge, 2, 319 pp.Google Scholar
Wang, H. Frey, M. and Stern, W.B., (1996) Diagenesis and metamorphism of clay minerals in the Helvetic Alps of eastern Switzerland Clays and Clay Minerals 44 96112.CrossRefGoogle Scholar
Warr, L.N., (1996) Standardized clay mineral crystallinity data from the very low-grade metamorphic facies rocks of southernNew Zealand European Journal of Mineralogy 8 115127.CrossRefGoogle Scholar
Warr, L.N. and Rice, A.H.N., (1994) Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data Journal of Metamorphic Geology 12 141152.CrossRefGoogle Scholar
Warr, L.N. and Nieto, F., (1998) Crystallite thickness and defect density of phyllosilicates in low-temperature meta-morphic pelites: A TEM and XRD study of clay-mineral crystallinity-index standards The Canadian Mineralogist 36 14531474.Google Scholar
Weaver, C.E., (1960) Possible uses of clay minerals in search for oil Bulletin of the American Association of Petroleum Geologists 44 15051518.Google Scholar
Williams, L.B. Ferrell, R.E. Chinn, E.W. and Sassen, R., (1989) Fixed-ammonium in clays associated with crude oils Applied Geochemistry 4 605616.CrossRefGoogle Scholar
Wilson, P.N. Parry, W.T. and Nash, W.P., (1992) Characterization of hydrothermal tobelitic veins from black shale, Oquirrh Mountains, Utah Clays and Clay Minerals 40 405420.CrossRefGoogle Scholar
Yau, Y.C. Peacor, D.R. Bearne, R.e. Essene, E.J. and McDowell, S.D., (1988) Microstructures, formation mechanisms, and depth-zoning of phyllosilicates in geothermally altered shales, SaltonSea, California Clays and Clay Minerals 36 110.Google Scholar
Zhang, Y. Muchez, P.h. and Hein, U.F., (1997) Chlorite geothermometry and the temperature conditions at the Variscan thrust front ineastern Belgium Geologie en Mijnbouw 76 267270.CrossRefGoogle Scholar