Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T22:46:40.289Z Has data issue: false hasContentIssue false

Sepiolite-Palygorskite from the Hekimhan Region (Turkey)

Published online by Cambridge University Press:  28 February 2024

Hüseyin Yalçin
Affiliation:
Department of Geological Engineering, Cumhuriyet University, 58140 Sivas, Turkey
Ömer Bozkaya
Affiliation:
Department of Geological Engineering, Cumhuriyet University, 58140 Sivas, Turkey
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Upper Cretaceous-Tertiary marine clayey-calcareous rocks of the Hekimhan basin contain fibrous clay minerals in significant amounts. Ophiolitic rocks in the provenance area have contributed the elements to form the clay minerals. XRD, SEM, major, trace and REE analyses were applied to samples taken from several stratigraphic sections. Diagenetic minerals such as smectite, dolomite, calcite, gypsum, celestite and quartz/chalcedony are associated with sepiolite-palygorskite group clays. Trace and rare earth elements (REE) are more abundant in palygorskite than sepiolite. REE abundances in the sepiolite-palygorskite are characterized by negative Eu and positive Nd anomalies when normalized with respect to chondrite and shale. Sepiolites with sharp XRD peaks are formed by diagenetic replacement of dolomite and diagenetic transformation of palygorskite, or by direct crystallization from solution. The average structural formula of the sepiolite is:

(Mg7.15Al0.13Fe0.31Cr0.06Ni0.04)(Si11.98Al0.02)O30(OH)4(OH2)4Ca0.03Na0.02K0.02.8H2O

Palygorskite appears to be authigenic by direct precipitation from solution. It exists in both monoclinic and orthorhombic forms with the mean structural formula given below

(Mg2.22Al1.00Ti0.04Fe0.77Cr0.01Ni0.02)(Si7.68Al0.32)O20(OH)2(OH2)4Ca0.07Na0.05K0.10.4H2O

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

References

Ataman, G., 1966. Géochimie des minéraux argileux dans les bassins sédimentaires marins. Etudes sur le bassin Triassique du Jura. Mem. Serv. Carte géol. Alsace-lorrain, 25: 237 pp.Google Scholar
Bozkaya, Ö, and Yalçin, H. 1991. An approach to Upper Cretaceous-Tertiary transition by using clay and carbonate mineralogy, Malatya-Hekimhan province, Eastern Turkey. Proceedings, 7th Euroclay Conf. Dresden '91, August 26-30. 1: 141146.Google Scholar
Bradley, W. I., 1940. Structure of attapulgite. Amer. Min. 25: 405410.Google Scholar
Brindley, G. W., 1959. X-ray and electron diffraction data for sepiolite. Amer. Min. 44: 495500.Google Scholar
Brindley, G. W., 1980a. Order-disorder clay mineral structures: In Crystal Structures of Clay Minerals and Their X-ray Identification. Brindley, G. W., and Brown, G., eds. London: Mineralogical Society, 125195.Google Scholar
Brindley, G. W., 1980b. Quantitative x-ray mineral analysis of clays. In Crystal Sructures of Clay Minerals and Their X-ray Identification. Brindley, G. W., and Brown, G., eds. London: Mineralogical Society, 411438.CrossRefGoogle Scholar
Caggianelli, A., Fiore, ., Mongelli, G., and Salvemini, A. 1992. REE distribution in the clay fraction of pelites from the southern Apennines, Italy. Chem. Geol. 99: 253263.Google Scholar
Caillere, S., and Hénin, S. 1963. Minéralogie des Argiles. Paris, Masson et Cie. 355 pp.Google Scholar
Caillere, S., Hénin, S., and Rautureau, M. 1982. Minéralogie des Argiles, II: Classification et Nomenclature. Paris: Masson. 189 pp.Google Scholar
Callen, R. A., 1977. Late Cainozoic environments of part of northeastern South Australia. J. Geol. Soc. Aust. 24: 151169.Google Scholar
Callen, R.A., 1984. Clays of the palygorskite-sepiolite group: Depositional environment, age and distribution. In Palygorskite-Sepiolite: Occurrences, Genesis and Uses. Singer, A., and Galan, E., eds. Dev. in Sediment, 37, Amsterdam: Elsevier. 137.Google Scholar
Chahi, A., Duplay, J., and Lucas, J. 1993. Analyses of palygorskites and associated clays from the Jbel Ghassoul (Morocco): Chemical characteristics and origin of formation. Clays & Clay Miner. 41: 401411.Google Scholar
Chisholm, J. E., 1990. An X-ray powder-diffraction study of palygorskite. Can. Min. 28: 329339.Google Scholar
Chisholm, J. E., 1992. Powder-diffraction patterns and structural models for palygorskite. Can. Min. 30: 6173.Google Scholar
Christ, C. L., Hataway, J. C., Hostetler, P. B., and Shepard, A. O. 1969. Palygorskite: New X-ray data. Amer. Min. 54: 198205.Google Scholar
Church, T. M., and Velde, B. 1979. Geochemistry and origin of a deep-sea Pacific palygorskite deposit. Chem. Geol. 25: 3139.Google Scholar
Couture, R. A., 1977. Composition and origin of palygorskite-rich and montmorillonite-rich zeolite-containing sediments from the Pacific Ocean. Chem. Geol. 19: 113130.Google Scholar
Dhannoun, H. Y., and Al-Dabbagh, S.M.A. 1988. Origin and chemistry of palygorskite-bearing rocks (Middle Eocene) from Northeast Iraq. Chem. Geol. 69: 95101.Google Scholar
Eberl, D. E., Jones, B. F., and Khoury, H. N. 1982. Mixed-layer kerolite/stevensite from the Amargosa Desert, Nevada. Clays & Clay Miner. 30: 321326.Google Scholar
Ece, Ö. I., and Çoban, F. 1994. Geology, occurrence, and genesis of Eskişehir sepiolite, Turkey. Clays & Clay Miner. 42: 8192.Google Scholar
Estéoule-Choux, J., 1984. Palygorskite in the Tertiary deposits of the Armorican Massif. In Palygorskite-Sepiolite: Occurrences, Genesis and Uses. Singer, A., and Galan, E., eds. Dev. in Sediment., 37, Amsterdam: Elsevier. 7585.Google Scholar
Flanagan, F. J., 1976. Descriptions and analyses of eight new USGS rock standards. In Twenty-eight papers present analytical data on new and previously described whole rock standards. Flanagan, F. J., ed. USGS Professional Paper 840, 171172.Google Scholar
Fleet, A. J., 1984. Aqueous and sedimentary geochemistry of the rare earth elements. In Rare Earth Elements. Henderson, P., ed. Dev. in Geochem. 2, Amsterdam: Elsevier. 343373.Google Scholar
Galan, E., and Castillo, A. 1984. Sepiolite-palygorskite in Spanish Tertiary Basins: Genetical patterns in continental environments. In Palygorskite-Sepiolite: Occurrences, Genesis and Uses, Singer, A., and Galan, E., eds. Dev. in Sediment., 37, Amsterdam: Elsevier. 87124.Google Scholar
Govindaraju, K., 1989. 1989 compilation of working values and sample description for 272 geostandards. Geostandards Newsletter. 13: 1113.Google Scholar
Harder, H., 1972. The role of magnesium in the formation of smectites minerals. Chem Geol. 10: 3139.Google Scholar
Haskin, L. A., Haskin, M. A., Frey, F. A., and Wildeman, T. R. 1968. Relative and absolute terrestrial abundances of the rare earths. In Origin and Distributions of the Elements. Ahren, L. H., ed. New York: Pergamon, 889912.Google Scholar
Hassouba, H., and Shaw, H. F. 1980. The occurrence of palygorskite in Quaternary sediments of the coastal plain of North-west Egypt. Clay Minerals. 15: 7783.Google Scholar
Imai, N., Otsuka, R., Kashide, H., and Hayashi, R. 1969. Dehydration of palygorskite and sepiolite from Kuzuu district, Tochigi Pref., Central Japan. Int. Clay. Conf. Tokyo. Heller, L., ed. 1: 99108.Google Scholar
Isphording, W. C., 1984. The clays from Yucatan, Mexico: A contrast in genesis. In Palygorskite-Sepiolite: Occurrences, Genesis and Uses. Singer, A., and Galan, E., eds. Dev. in Sediment., 37, Amsterdam: Elsevier. 5973.Google Scholar
Janczyszyn, J., Wyszomirski, P., and Domanska, G. 1989. Instrumental neutron activation analyses of residual kaolin from Wadroze Wielke, Lower Silesia, Poland. Nucl. Geo-phys. 5: 5364.Google Scholar
Jones, B. F., 1983. Occurrences of clay minerals in surficial deposits of southwestern Nevada. Sci. Geol. Mem. 72: 8192.Google Scholar
Jones, B. F., 1986. Clay mineral diagenesis in lacustrine sediments. U.S. Geological Survey Bull. 1578: 291300.Google Scholar
Jones, B. F., and Galan, E. 1988. Palygorskite-Sepiolite. In Hydrous Phyllosilicates (Exclusive of Micas), Bailey, S. W., ed. Washington: Rev. in Min., 19, Min. Soc. Amer. 698 pp.Google Scholar
Kahle, Ch. F., 1965. Possible role of clay minerals in the formation of dolomite. J. Sed. Pet. 35: 448453.Google Scholar
Kamineni, D. C., Griffault, L. Y., and Kerrich, R. 1993. Palygorskite from fractures zones in the Eye-Dashwa Lakes granitic pluton, Atikokan, Ontario. Can. Miner. 31: 173183.Google Scholar
McLennan, S. M., 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In Geochemistry and Mineralogy of Rare Earth Elements. Lipin, B. R., and McKay, G. A., eds. Rev. in Min., 21, Min. Soc. Amer., 169200.Google Scholar
Millot, G., 1970. Geology of Clays. Berlin: Springer, 429 pp.Google Scholar
Pallister, J. S., and Knight, R. J. 1981. Rare-earth element geochemistry of the Samail ophiolite near Ibra, Oman. J. Geophys. Res. 86: 26732697.Google Scholar
Paquet, H., and Millot, G. 1972. Geochemical evolution of clay minerals in the weathered products of soils of Mediterranean climate. Proc. Int. Clay Conf. Madrid, 199206.Google Scholar
Singer, A., 1979. Palygorskite in sediments: Detrital diagenetic or neoformed. A critical review. Geol. Rund. 68: 9961008.Google Scholar
Singer, A., 1984. Pedogenic palygorskite in the arid environment. In Palygorskite-Sepiolite: Occurrences, Genesis and Uses. Singer, A., and Galan, E., eds. Dev. in Sediment., 37, Elsevier, Amsterdam , 169176.Google Scholar
Stoessell, R. K., and Hay, R. L. 1978. The geochemical origin of sepiolite and kerolite at Amboseli, Kenya. Contrib. Mineral. Petrol. 65: 255267.Google Scholar
Tardy, Y., Krempp, G., and Trauth, N. 1972. Le lithium dans les minéraux argileux des sédiments et des sols. Geo-chim. Cosmochim. Acta. 36: 397412.Google Scholar
Taylor, S. R., and McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 312 pp.Google Scholar
Torres-Ruiz, J., López-Galindo, A., González-López, J. M., and Delgado, A. 1994. Geochemistry of Spanish sepiolite-palygorskite deposits: Genetic considerations based on trace elements and isotopes. Chem. Geol. 112: 221245.Google Scholar
Toyoda, K., Nakamura, Y., and Masuda, A. 1990. Rare earth elements of Pacific pelagic sediments. Geochim. Cosmochim. Acta. 54: 10931103.Google Scholar
Trauth, N., 1977. Argiles évaporitiques dans la sédimentation carbonatée continentale et épicontinentale tertiaire. Sci. Géol. 49: 195 pp.Google Scholar
Velde, B., 1985. Clay Minerals: A physico-chemical explanation of their occurrence. Dev. in Sediment., 40, New York: Elsevier. 427 pp.Google Scholar
Weaver, C. E., 1984. Origin and geologic applications of the palygorskite deposits of the S. E. United States. In Palygorskite-Sepiolite: Occurrences, Genesis and Uses. Singer, A., and Galan, E., eds. Dev. in Sediment., 37, Amsterdam: Elsevier. 3958.Google Scholar
Weaver, C. E., and Beck, K. C. 1977. Miocene of the S.E. United States: A model for chemical sedimentation in a peri-marine environment. Sediment Geol. 17: 1234.Google Scholar
Weaver, C. E., and Pollard, L. D. 1973. The Chemistry of Clay Minerals. Dev. in Sediment., 15, Amsterdam, 213 pp.Google Scholar
Wyszomirski, P., and Janczyszyn, J. 1991. Instrumental neutron activation analyses of Lower Silesian Kaolins (Poland): A study on rare earth elements. Nucl. Geophys. 5: 5364.Google Scholar
Yeniyol, M., 1986. Vein-like sepiolite occurrence as a replacement of magnesite in Konya, Turkey. Clays & Clay Miner. 34: 353356.Google Scholar