Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T19:06:01.217Z Has data issue: false hasContentIssue false

Selectivity and Adsorption Capacity of Smectite and Vermiculite for Aluminum of Varying Basicity

Published online by Cambridge University Press:  01 July 2024

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Smectite (from South Dakota, Wyoming, and Mississippi) and Vermiculite (Transvaal) were treated with solutions of Al(OH)B(3-B)+, with B varying from 0 to 2.5. The average basicity (OH/Al = B) of the Al adsorbed differed very much from the basicity of the Al added. The average basicity of the Al adsorbed by smectite was always above the average basicity of the Al added. In contrast to smectite, Vermiculite adsorbed smaller hydroxy-Al complexes. One reason for the different selective behavior was the difference in expansion between smectite (about 18 Å) and vermiculite (about 14 Å). Because of the adsorption of the relatively more basic OH-Al by smectite, smectite adsorbed considerably more Al than vermiculite. The total amount of aluminum in the interlayer generally could not be calculated by the difference between Al added and that remaining in solution after the reaction because of possible protonation of the clay mineral and adsorption of structural Al and other cations, which is more pronounced for vermiculite. The results in the present study demonstrated that neither the quantitative nor the qualitative composition of an Al(OH)B-treated exchanger can be deduced from B of the Al salts added. These points are frequently overlooked when cation exchangers are pretreated with Al of variable basicity and are used for further investigations, such as studies of CEC, surface area, interlayer spacing, anion reactions, the formation of gibbsite, etc. Before these kinds of investigations are conducted employing the pretreated OH-Al-exchangers, their composition should be known precisely.

Резюме

Резюме

Сукновальная глина /из Южной Дакоты,Вайоминга и Миссисипи/ и вермикулит /Трасвааль/ были обработаны раствором Аl(ОН)в(3-В)+, c в изменяющимся от 0 до 2,5.Средняя валентность (OН/Аl=В) адсорбированного Аl значительно отличается от валентности добавленного Аl.Средняя валентность Аl,адсорбированного сукновальной глиной,была всегда выше средней валентности добавленного Аl.В противоположность сукновальной глине вермикулит адсорбировал меньше соединений гидроокиси Аl.Одной из причин их различного селективного поведения было различие в растяжимости сукновальной глины /около 18 Д/ и вермикулита /около 14 Å/.В связи с адсорбцией сукновальной глиной относительно более основной ОН-Аl,сукновальная глина адсорбировала значительно больше Аl, чем вермикулит.Обычно нельзя подсчитать полное количество алюминия в прослое по различию в количестве добавленного Аl и оставшегося в растворе после реакции,в связи с возможной реакцией иона Н с глинистым минералом и адсорбцией структурного Аl и других катионов,что более ясно выражено для вермикулита. Результаты настоящего исследования показывают,что из В добавленных солей Аl нельзя выводить заключение ни о количественном,ни о качественном составе обменного раствора,обработанного Аl(OН)в.Эти положения часто остаются незамеченными,когда катионные обменные растворы предварительно обрабатываются Аl различной валентности и используются для дальнейших исследований,таких как изучение катионной обменной способности,поверхностной площади,промежутка между слоями,анионных реакций,формирования гиббсита и т.д.До проведения таких исследований,использующих предварительно обработанные OН-Аl обменные растворы,необходимо точно знать их состав.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

Footnotes

*

Contribution from the Institut für Ökologie — Bodenkunde — der Technischen Universität, Berlin.

References

Barnhisel, R. I. (1969) Changes in specific surface areas of clays treated with hydroxy-aluminum: Soil Sci. 107, 126130.CrossRefGoogle Scholar
Barnhisel, R. I. and Rich, C. I. (1963) Gibbsite formation from aluminum-interlayers: Soil Sci. Soc. Am. Proc. 27, 632635.CrossRefGoogle Scholar
Brosset, C., Biedermann, C. and Sillen, L. G. (1954) Studies on the hydrolysis of metal ions. XI. The aluminum ion, Al3+: Acta Chem. Scand. 8, 19171926.CrossRefGoogle Scholar
Brown, G. and Newman, A. C. D. (1973) The reactions of soluble aluminum with montmorillonite: J. Soil Sci. 24, 339354.CrossRefGoogle Scholar
Brydon, J. E. and Kodama, H. (1966) The nature of aluminum hydroxide-montmorillonite complexes: Am. Mineral. 51, 875889.Google Scholar
Carstea, D. D. (1968) Formation of hydroxy-Al and –Fe interlayers in montmorillonite and vermiculite: Influence of particle size and temperature: Clays & Clay Minerals 16, 231238.CrossRefGoogle Scholar
Coulter, B. S. (1969) The chemistry of hydrogen and aluminum ions in soils, clay minerals and resins: Soils and Fert. 32, 215223.Google Scholar
Hsu, Pa Ho. (1968) Heterogeneity of montmorillonite surface and its effect on the nature of hydroxy-aluminum interlayers: Clays & Clay Minerals 16, 303311.CrossRefGoogle Scholar
Hsu, Pa Ho and Bates, T. F. (1964) Fixation of hydroxy-aluminum polymers by vermiculite: Soil Sci. Soc. Am. Proc. 28, 763769.CrossRefGoogle Scholar
Jackson, M. L. (1960) Structural role of hydronium in layer silicates during soil genesis: 7th Int. Congr. Soil Sci. 2, 445455.Google Scholar
Jackson, M. L. (1963) Aluminum bonding in soils: A unifying principle in soil science: Soil Sci. Soc. Am. Proc. 27, 110.CrossRefGoogle Scholar
Jahr, K. F. and Brechlin, A. (1952) Über kryoskopische Ionenge-wichtsbestimmungen mit Hilfe des Eutektikums Eis-Kaliumnitrat in Lösungen basischer Aluminiumnitrate: Z. Anorg. Chem. 270, 257272.CrossRefGoogle Scholar
Kawasaki, H. and Aomine, S. (1964) Influence of pH on the formation of the hydroxy-Al-montmorillonite complex: Soil Sci. Plant Nutr. 10, 177183.CrossRefGoogle Scholar
Kozak, L. M. and Huang, P. M. (1971) Adsorption of hydroxy-Al by certain phyllosilicates and its relation to K/Ca cation exchange selectivity: Clays & Clay Minerals 19, 95102.CrossRefGoogle Scholar
Kudelka, H. (1960) Über salzkryoskopische Messungen und Diffusionsmessungen an basischen Aluminum-Lösungen: Diss. Freie Universität, Berlin.Google Scholar
Rich, C. I. (1960) Aluminum in interlayers of vermiculite: Soil Sci. Soc. Am. Proc. 24, 2632.CrossRefGoogle Scholar
Rich, C. I. (1968) Hydroxy interlayers in expansible layer silicates: Clays & Clay Minerals 16, 1530.CrossRefGoogle Scholar
Sawhney, B. L. (1968) Aluminum interlayers in layer silicates. Effect of OH/Al ratio of Al solution, time of reaction, and type of structure: Clays & Clay Minerals 16, 157163.CrossRefGoogle Scholar
Shen, Mu Ju and Rich, C. I. (1962) Aluminum fixation in montmorillonite: Soil Sci. Soc. Am. Proc. 26, 3336.CrossRefGoogle Scholar
Thomas, C. W. (1960) Forms of aluminum in cation exchangers: 7th Int. Congr. Soil Sci. 2, 364369.Google Scholar
Turner, R. C. and Brydon, J. E. (1965) Factors affecting the solubility of Al(OH)3 precipitated in the presence of montmorillonite: Soil Sci. 100, 176181.CrossRefGoogle Scholar
Veith, J. A. (1977) Basicity of exchangeable aluminum, formation of gibbsite, and composition of the exchange acidity in the presence of exchangers: Soil Sci. Soc. Am. J. 41, 865870.CrossRefGoogle Scholar
Veith, J. A. and Schwertmann, U. (1972) Reaktionen von Ca-Montmorillonit und Ca-Vermiculit mit Kohlensäure: Z. Pflanzenernähr. Bodenk. 131, 2137.CrossRefGoogle Scholar
Veith, J. A. and Sposito, G. (1977) On the average equilibrium OH/Al molar ratio for aluminum adsorbed by a synthetic cation exchanger: Soil Sci. Soc. Am. J. (submitted).Google Scholar