Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T07:48:22.186Z Has data issue: false hasContentIssue false

Selective Gas Adsorption by Amorphous Clay-Mineral Derivatives

Published online by Cambridge University Press:  28 February 2024

Cristina Volzone
Affiliation:
Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cno. Centenario y 506, CC 49 (1897) MB Gonnet, Buenos Aires, Argentina
John G. Thompson
Affiliation:
Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia
Alexandra Melnitchenko
Affiliation:
Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia
José Ortiga
Affiliation:
Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cno. Centenario y 506, CC 49 (1897) MB Gonnet, Buenos Aires, Argentina
Stephen R. Palethorpe
Affiliation:
Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Amorphous derivates prepared by aqueous reaction of various aluminosilicate clay minerals with concentrated KF solution at 80–110°C were studied for their gas adsorption properties. The four clay minerals studied are halloysite, a well-crystallized kaolinite, a poorly crystallized kaolinite, and a montmorillonite. The gases tested are N2, O2, CH4, CO, CO2, and C2H2. The kaolin-group mineral derivatives are characterized by substantial reduction in particle size, high specific surface, and significant selectivity towards CO2 and C2H2 relative to the other gases. The montmorillonite derivative shows no increase in adsorption over the starting material, however, for all the materials high adsorption of CO2 and C2H2 was observed. Levels of gas adsorption and gas adsorption ratios are comparable to pillared clays.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

References

Baksh, M.S.A. and Yang, R.T., 1992 Unique adsorption properties and potential energy profiles of microporous pillared clays American Institute of Chemical Engineers Journal 38 13571368 10.1002/aic.690380906.CrossRefGoogle Scholar
Delon, J.F. Lietard, O. Cases, J.M. and Yvon, J., 1986 Determination of porosity of platy materials using slit-shaped and bevelled pores Clay Minerals 21 361375 10.1180/claymin.1986.021.3.08.CrossRefGoogle Scholar
Gregg, S.L. and Sing, K.S.W., 1991 Adsorption Surface Area and Porosity 2nd edition London Academic Press.Google Scholar
Harvey, C.C. Townsend, M.G. and Evans, R.B., 1990 The halloysite clays of Northland, New Zealand The Australasian Institute of Mining and Metallurgy Annual Conference New Zealand Rotorua 229238.Google Scholar
Kapoor, A. and Yang, R.T., 1989 Kinetic separation of methane-carbon dioxide mixture by adsorption on molecular sieve carbon Chemical Engineering Science 44 17231733 10.1016/0009-2509(89)80014-4.CrossRefGoogle Scholar
Patel, R.L. Nandi, S.P. and Walker, P.L. Jr., 1972 Molecular sieve characteristics of slightly activated anthracite Fuel 51 4751 10.1016/0016-2361(72)90037-3.CrossRefGoogle Scholar
Perrotta, A.J. and Smith, J.V., 1965 The crystal structure of kalsilite, KAlSiO4 Mineralogical Magazine 35 588595 10.1180/minmag.1965.035.272.02.CrossRefGoogle Scholar
Thompson, J.G. Mackinnon, I.D.R. Koun, A. and Gabbitas, N., 1994 Kaolin derivatives PCT patent application, WO 95/00441 AU94/00323 .Google Scholar
Thompson, J.G. Melnitchenko, A. Palethorpe, S.R. and Withers, R.L., 1997 Zeolitic behaviour in stuffed silica polymorphs Journal of Materials Chemistry 7 673679 10.1039/a700078b.CrossRefGoogle Scholar
Volzone, C. and Ortiga, J., 1998 Adsorciones de gases en bentonitas modificadas 1923.Google Scholar
Volzone, C. Ortiga, J. Garrido, L.B. Hipedinger, N.E. and Pereira, E., 1997 Síntesis de arcillas pilareadas con Al, Cr y Zr para su utilización como adsorbentes Programa lberoamericano de Ciencia y Tecnologia para el Desarrollo (CYTED), Subprograma V. Catálisis y Adsorbentes, Proyecto V.3., Meeting: Colombia, Bogotá, 9–11 abril 1997 17.Google Scholar
Volzone, C. Ortiga, J. Garrido, L.B. Hipedinger, N.E. and Meroni, A.L., 1997 Síntesis de arcillas pilareadas con Al, Zr y Ti para su utilización como adsorbentes Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo (CYTED), Subprograma V. Catâlisis y Adsorbentes, Proyecto V.3., Meeting: La Habana, Cuba, 14–17 de se-tiembre 1997 17.Google Scholar
Volzone, C. Ortiga, J. and Garrido, L.B., 1998 Síntesis de arcillas pilareadas con Al y modificadas para su utilización como adsorbentes Programa lberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED), Subprograma V. Catálisis y Adsorbentes. Proyecto V.3., Meeting: Caraballeda, Venezuela, 24–27 febrero 1998 15.Google Scholar
Wallis, D.S., 1997 Queensland minerals for the 21st century Publications of the Australasian Institute of Mining and Metallurgy 1/97 3342.Google Scholar
Yang, R.T., 1987 Gas Separation by Adsorption Processes Boston Butterworth.Google Scholar
Yang, R.T. and Baksh, M.S.A., 1991 Pillared clays as a new class of sorbents for gas separation American Institute of Chemical Engineers Journal 37 679686 10.1002/aic.690370506.CrossRefGoogle Scholar