Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T16:16:43.967Z Has data issue: false hasContentIssue false

Seasonal Variation in the Mineralogy of the Suspended Particulate Matter of the Lower Changjiang River at Nanjing, China

Published online by Cambridge University Press:  01 January 2024

Changping Mao*
Affiliation:
Institute of Surficial Geochemistry, Department of Earth Sciences, Nanjing University, Nanjing 210093, China
Jun Chen
Affiliation:
Institute of Surficial Geochemistry, Department of Earth Sciences, Nanjing University, Nanjing 210093, China
Xuyin Yuan
Affiliation:
College of Environmental Science and Engineering, Hohai University, Nanjing 210098, China
Zhongfang Yang
Affiliation:
School of Earth Science and Resources, China University of Geosciences (Beijing), Beijing 100083, China
William Balsam*
Affiliation:
Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, TX 76019, USA
Junfeng Ji
Affiliation:
Institute of Surficial Geochemistry, Department of Earth Sciences, Nanjing University, Nanjing 210093, China
*
* E-mail address of corresponding author: [email protected]
Current address: 209 Camino de Santiago, Taos, New Mexico 87571, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The source and temporal changes of minerals transported by the world's large rivers are important. In particular, clay minerals are important in evaluating the maturity of suspended sediments, weathering intensity, and source area. To examine seasonal changes in mineralogical compositions of the Changjiang River (CR), suspended particulate matter (SPM) samples were collected monthly for two hydrological cycles in Nanjing city and then were studied using X-ray diffraction (XRD), diffuse reflectance spectrophotometry (DRS), X-ray fluorescence spectrometry (XRF), and chemical analyses. The results indicate that the concentration of CR SPM ranges from 11.3 to 152 mg/L and is highly correlated to the rate of water discharge, with a greater concentration in flood season and lower concentrations during the dry season. CaO, MgO, and Na2O increase with increasing discharge whereas Al2O3 decreases sharply with increasing discharge. Dolomite, calcite, and plagioclase show strikingly similar seasonal variations and increase with increasing discharge with maximum concentrations in the flood season. In contrast, the clay mineral content exhibits the opposite trend with the lowest concentrations in the flood season. Illite dominates the clay minerals of the CR SPM, followed by chlorite, kaolinite, and smectite. Illite and kaolinite show distinctly seasonal variations; SPM contains more illite and less kaolinite during the flood season than during the dry season. The illite chemistry index and crystallinity, as well as kaolinite/illite ratio, all indicate intense physical erosion in the CR basin during the rainy season. Total iron (FeT) and highly reactive iron (FeHR) concentrations display slight seasonal changes with the smallest values observed during the flood season. Goethite is the dominant Fe oxide mineral phase in the CR SPM and hematite is a minor component, as revealed by DRS analyses. The FeT flux and FeHR flux are 2.786×106 T/y and 1.196×106 T/y, respectively.

Type
Article
Copyright
Copyright © Clay Minerals Society 2010

References

Balsam, W.L. and Beeson, J.P., 2003 Sea-floor sediment distribution in the Gulf of Mexico Deep-Sea Research Part I 50 14211444 10.1016/j.dsr.2003.06.001.CrossRefGoogle Scholar
Barranco, F.T., Balsam, W.L. and Deaton, B.C., 1989 Quantitative reassessment of brick red lutites: Evidence from reflectance spectrophotometry Marine Geology 89 299314 10.1016/0025-3227(89)90082-0.CrossRefGoogle Scholar
Berner, R.A., 1970 Sedimentary Pyrite Formation American Journal of Science 268 123 10.2475/ajs.268.1.1.CrossRefGoogle Scholar
Berner, E.K. and Berner, R.A., 1996 Global Environment: Water, Air, and Geochemical Cycles New Jersey, USA Prentice Hall, Englewood Clifts.Google Scholar
Biscaye, P.E., 1965 Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans Geological Society of America Bulletin 76 803832 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2.CrossRefGoogle Scholar
Borch, T., Masue, Y., Kukkadapu, R.K. and Fendorf, S., 2007 Phosphate imposed limitations on biological reduction and alteration of ferrihydrite Environmental Science Technology 41 166172 10.1021/es060695p.CrossRefGoogle ScholarPubMed
Boski, T., Pessoa, J., Pedro, P., Thorez, J., Dias, J.M.A. and Hall, I.R., 1998 Factorsgoverning abundance of hydro-lysable amino acids in the sediments from the NW European Continental margin (47–50ºN) Progress in Oceanography 42 145164 10.1016/S0079-6611(98)00032-9.CrossRefGoogle Scholar
Chamley, H., 1989 Clay Sedimentology 10.1007/978-3-642-85916-8.CrossRefGoogle Scholar
Chen, J.S., Wang, F.Y., Xia, X.H. and Zhang, L.T., 2002 Major element chemistry of the Changjiang (Yangtze River) Chemical Geology 187 231255 10.1016/S0009-2541(02)00032-3.CrossRefGoogle Scholar
Chen, X.Q., Yan, Y.X., Fu, R.S., Dou, X.P. and Zhang, E.F., 2008 Sediment transport from the Yangtze River, China, into the sea over the Post-Three Gorge Dam Period: A discussion Quaternary International 186 5564 10.1016/j.quaint.2007.10.003.CrossRefGoogle Scholar
Chen, Z.Y., Li, J.F., Shen, H.T. and Wang, Z.H., 2001 Yangtze River of China: Historical analysis of discharge variability and sediment flux Geomorphology 41 7791 10.1016/S0169-555X(01)00106-4.CrossRefGoogle Scholar
Chetelat, B., Liu, C., Zhao, Z., Wang, Q., Li, S., Li, J. and Wang, B., 2008 Geochemistry of the dissolved load of the Changjiang Basin rivers: anthropogenic impacts and chemical weathering Geochimica et Cosmochimica Acta 72 42544277 10.1016/j.gca.2008.06.013.CrossRefGoogle Scholar
Cook, H.E., Johnson, P.D., Matti, J.C., Zemmels, I. et al. , and and Kaneps, A.G. 1975 et al. , Methodsof sample preparation and x-ray diffraction analysis in x-ray mineralogy laboratory Initial Reports of the DSDP Washington, D.C. Printing Office 9971007.Google Scholar
Cornell, R.M. and Schwertmann, U., 2003 The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses 10.1002/3527602097.CrossRefGoogle Scholar
Deaton, B.C. and Balsam, W.L., 1991 Visible spectroscopy-a rapid method for determining hematite and goethite concentration in geological materials Journal of Sedimentary Petrology 61 628632 10.1306/D4267794-2B26-11D7-8648000102C1865D.CrossRefGoogle Scholar
Dekov, V.M., Komy, Z., Araujo, F., Van Put, A. and VanGrieken, R., 1997 Chemical composition of sediments, suspended matter, river water and ground water of the Nile (Aswan-Sohag traverse) Science of the Total Environment 201 195210 10.1016/S0048-9697(97)84057-0.CrossRefGoogle ScholarPubMed
Ding, T., Wan, D., Wang, C. and Zhang, F., 2004 Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China Geochimica et Cosmochimica Acta 68 205216 10.1016/S0016-7037(03)00264-3.CrossRefGoogle Scholar
Duan, S.W., Liang, T., Zhang, S., Wang, L.J., Zhang, X.M. and Chen, X.B., 2008 Seasonal changes in nitrogen and phosphorus transport in the lower Changjiang River before the construction of the Three Gorges Dam Estuarine Coastal and Shelf Science 79 239250 10.1016/j.ecss.2008.04.002.CrossRefGoogle Scholar
Dupré, B., Gaillardet, J., Rousseau, D. and Allegre, C.J., 1996 Major and trace elementsof river-borne material: the Congo basin Geochimica et Cosmochimica Acta 60 13011321 10.1016/0016-7037(96)00043-9.CrossRefGoogle Scholar
Eberl, D.D., 2004 Quantitative mineralogy of the Yukon River system: Changes with reach and season, and determining sediment provenance American Mineralogist 89 17841794 10.2138/am-2004-11-1225.CrossRefGoogle Scholar
Esquevin, J., 1969 Influence de la composition chimique des illites sur le cristallinité 3 147154.Google Scholar
Fung, I.Y., Meyn, S.K., Tegen, I., Doney, S.C., John, J.G. and Bishop, J.K.B., 2000 Iron supply and demand in the upper ocean Global Biogeochemical Cycles 14 281296 10.1029/1999GB900059.CrossRefGoogle Scholar
Gaillardet, J., Dupre, B. and Allegre, C. J., 1999 Geochemistry of large river suspended sediments: Silicate weathering or recycling tracer? Geochimica et Cosmochimica Acta 63 40374051 10.1016/S0016-7037(99)00307-5.CrossRefGoogle Scholar
Gaillardet, J., Dupré, B., Louvat, P. and Allègre, C.J., 1999 Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers Chemical Geology 159 330 10.1016/S0009-2541(99)00031-5.CrossRefGoogle Scholar
Galy, A. and France-Lanord, C., 2001 Higher erosion rates in the Himalaya: Geochemical constraints on riverine fluxes Geology 29 2326 10.1130/0091-7613(2001)029<0023:HERITH>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Gao, S. and Wang, Y.P., 2008 Changesin material fluxes from the Changjiang River and their implicationson the adjoining continental shelf ecosystem Continental Shelf Research 28 14901500 10.1016/j.csr.2007.02.010.CrossRefGoogle Scholar
Gimsing, A.L. and Borggaard, O.K., 2007 Phosphate and glyphosate adsorption by hematite and ferrihydrite and comparison with other variable-charge minerals Clays and Clay Minerals 55 108114 10.1346/CCMN.2007.0550109.CrossRefGoogle Scholar
Gingele, F.X., De Deckker, P. and Hillenbrand, C.D., 2001 Clay mineral distribution in surface sediments between Indonesia and NW Australia-source and transport by ocean currents Marine Geology 179 135146 10.1016/S0025-3227(01)00194-3.CrossRefGoogle Scholar
Gislason, S.R., Oelkers, E.H. and Snorrason, A., 2006 Role of river-suspended material in the global carbon cycle Geology 34 4952 10.1130/G22045.1.CrossRefGoogle Scholar
Guyot, J.L., Jouanneau, J.M., Soares, L., Boaventura, G.R., Maillet, N. and Lagane, C., 2007 Clay mineral composition of river sediments in the Amazon Basin Catena 71 340356 10.1016/j.catena.2007.02.002.CrossRefGoogle Scholar
Haese, R.R., Schulz, H.D., and Zabel, M., 2006 The biogeochemistry of iron Marine Geochemistry 2 New York Springer-Verlag Heidelberg 241270 10.1007/3-540-32144-6_7.CrossRefGoogle Scholar
Hu, M.H., Stallard, R.F. and Edmond, J.M., 1982 Major ion chemistry of some large Chinese rivers Nature 298 550553 10.1038/298550a0.Google Scholar
Irion, G., Degens, E.T., Kempe, S., and Richey, J.F., 1991 Mineralsin rivers Biogeochemistry of Major World Rivers New York Wiley 265281.Google Scholar
Jha, P.K., Vaithiyanathan, P. and Subramanian, V., 1993 Mineralogical characteristics of the sediments of a Himalayan river: Yamuna river-a tributary of the Ganges Environmental Geology 22 1320 10.1007/BF00775279.CrossRefGoogle Scholar
Ji, J.F., Chen, J. and Lu, H.Y., 1999 Origin of illite in the loessfrom the Luochuan area, LoessPlateau, Central China Clay Minerals 34 525532 10.1180/000985599546398.CrossRefGoogle Scholar
Ji, J.F., Balsam, W., Chen, J. and Liu, L.W., 2002 Rapid and quantitative measurement of hematite and goethite in the Chinese loess-paleosol sequence by diffuse reflectance spectroscopy Clays and Clay Minerals 50 208216 10.1346/000986002760832801.CrossRefGoogle Scholar
Jickells, T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N., Cao, J.J., Boyd, P.W., Duce, R.A., Hunter, K.A., Kawahata, H., Kubilay, N., LaRoche, J., Liss, P.S., Mahowald, N., Prospero, J.M., Ridgwell, A.J., Tegen, I. and Torres, R., 2005 Global iron connections between desert dust, ocean biogeochemistry, and climate Science 308 6771 10.1126/science.1105959.CrossRefGoogle ScholarPubMed
Kübler, B., 1967 La cristallinité de I’ illite et leszonestout a` fait supérieuresdu métamorphisme Etages tectoniques, Colloque de Neuchâtel 105121.Google Scholar
Koshikawa, M.K., Takamatsu, T., Takada, J., Zhu, M.Y., Xu, B.H., Chen, Z.Y., Murakami, S., Xu, K.Q. and Watanabe, M., 2007 Distributions of dissolved and particulate elementsin the Yangtze estuary in 1997–2002: Background data before the closure of the Three Gorges Dam Estuarine Coastal and Shelf Science 71 2636 10.1016/j.ecss.2006.08.010.CrossRefGoogle Scholar
Li, Y.H., Teraoka, H., Young, T.S. and Chen, J.S., 1984 The elemental composition of suspended particles from the Yellow and Yangtze Rivers Geochimica et Cosmochimica Acta 48 15611564 10.1016/0016-7037(84)90411-3.Google Scholar
Liu, J.P., Xu, K.H., Li, A.C., Milliman, J.D., Velozzi, D.M., Xiao, S.B. and Yang, Z.S., 2007 Flux and fate of Yangtze river sediment delivered to the East China Sea Geomorphology 85 208224 10.1016/j.geomorph.2006.03.023.CrossRefGoogle Scholar
Liu, Z.F., Trentesaux, A., Clemens, S.C., Colin, C., Wang, P.X., Huang, B.Q. and Boulay, S., 2003 Clay mineral assemblages in the northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years Marine Geology 201 133146 10.1016/S0025-3227(03)00213-5.CrossRefGoogle Scholar
Lu, X.X., Ashmore, P. and Wang, J.F., 2003 Seasonal water discharge and sediment load changes in the Upper Yangtze, China Mountain Research and Development 23 5664 10.1659/0276-4741(2003)023[0056:SWDASL]2.0.CO;2.CrossRefGoogle Scholar
Martin, J.M. and Meybeck, M., 1979 Elemental mass balance of material carried by major world rivers Marine Chemistry 7 173206 10.1016/0304-4203(79)90039-2.CrossRefGoogle Scholar
Milliman, J.D. and Meade, R.H., 1983 World-wide delivery of river sediment to the oceans Journal of Geology 91 121 10.1086/628741.CrossRefGoogle Scholar
Muller, B., Berg, M., Yao, Z.P., Zhang, X.F., Wang, D. and Pfluger, A., 2008 How polluted isthe Yangtze River? Water quality downstream from the Three Gorges Dam Science of the Total Environment 402 232247 10.1016/j.scitotenv.2008.04.049.CrossRefGoogle Scholar
Paige, C.R., Snodgrass, W.J., Nicholson, R.V., Scharer, J.M. and He, Q.H., 1997 The effect of phosphate on the transformation of ferrihydrite into crystalline products in alkaline media Water Air and Soil Pollution 97 397412.CrossRefGoogle Scholar
Petschick, R., Kuhn, G. and Gingele, F., 1996 Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography Marine Geology 130 203229 10.1016/0025-3227(95)00148-4.CrossRefGoogle Scholar
Poulton, S.W. and Canfield, D.E., 2005 Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates Chemical Geology 214 209221 10.1016/j.chemgeo.2004.09.003.CrossRefGoogle Scholar
Poulton, S.W. and Raiswell, R., 2002 The low temperature geochemical cycle of iron: from continental fluxesto marine sediment deposition American Journal of Science 302 774805 10.2475/ajs.302.9.774.CrossRefGoogle Scholar
Poutlon, S.W. and Raiswell, R., 2005 Chemical and physical characteristicsof iron oxidesin riverine and glacial melt-water sediments Chemical Geology 218 203221 10.1016/j.chemgeo.2005.01.007.Google Scholar
Raiswell, R., Canfield, D.E. and Berner, R.A., 1994 A comparison of iron extraction methods for the determination of degree of pyritization and the recognition of iron-limited pyrite formation Chemical Geology 111 101110 10.1016/0009-2541(94)90084-1.CrossRefGoogle ScholarPubMed
Raymo, M.E. and Ruddiman, W.F., 1992 Tectonic forcing of late Cenozoic climate Nature 359 117122 10.1038/359117a0.CrossRefGoogle Scholar
Rovira, M., Gimenez, J., Martinez, M., Martinez-Llado, X., De Pablo, J., Marti, V. and Duro, L., 2008 Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: Goethite and hematite Journal of Hazardous Materials 150 279284 10.1016/j.jhazmat.2007.04.098.CrossRefGoogle ScholarPubMed
Szramek, K., McIntosh, J.C., Williams, E.L., Kanduc, T., Ogrinc, N. and Walthers, L.M., 2007 Relative weathering intensity of calcite versus dolomite in carbonate-bearing temperate zone watersheds: Carbonate geochemistry and fluxesfrom catchments within the St. Lawrence and Danube river basin Geochemistry Geophysics Geosystems 8 Q04002 10.1029/2006GC001337.CrossRefGoogle Scholar
Taylor, S.R. and McLennan, S.M., 1985 The Continental Crust: its Composition and Evolution London Blackwell, Oxford.Google Scholar
Thiry, M., 2000 Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin Earth-Science Reviews 49 201221 10.1016/S0012-8252(99)00054-9.CrossRefGoogle Scholar
Tipper, E.T., Bickle, M.J., Galy, A., West, A.J., Pomiés, C. and Chapman, H.J., 2006 The short term climatic sensitivity of carbonate and silicate weathering fluxes: insight from seasonal variations in river chemistry Geochimica et Cosmochimica Acta 70 27372754 10.1016/j.gca.2006.03.005.CrossRefGoogle Scholar
Viers, J., Dupre, B. and Gaillardet, J., 2009 Chemical composition of suspended sediments in World Rivers: New insights from a new database Science of the Total Environment 407 853868 10.1016/j.scitotenv.2008.09.053.CrossRefGoogle ScholarPubMed
Wang, Z.L., Zhang, J. and Liu, C.Q., 2007 Strontium isotopic compositions of dissolved and suspended loads from the main channel of the Yangtze River Chemosphere 69 10811088 10.1016/j.chemosphere.2007.04.031.CrossRefGoogle ScholarPubMed
Weaver, C.E., 1989 Clays, Muds and Shales 44 819.Google Scholar
Xu, K.H. and Milliman, J.D., 2009 Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three GorgesDam Geomorphology 104 276283 10.1016/j.geomorph.2008.09.004.CrossRefGoogle Scholar
Xu, K.H., Milliman, J.D., Yang, Z.S. and Wang, H.J., 2006 Yangtze sediment decline partly from Three Gorges Dam Eos 87 185190 10.1029/2006EO190001.CrossRefGoogle Scholar
Xu, K.H., Milliman, J.D., Yang, Z.S., Xu, H. and Gupta, A., 2007 Climatic and anthropogenic impactson the water and sediment discharge from the Yangtze River (Changjiang), 1950–2005 Large Rivers: Geomorphology and Management West Sussex, England John Wiley & Sons 609626 10.1002/9780470723722.ch29.CrossRefGoogle Scholar
Xu, K.H., Milliman, J.D., Li, A.C., Liu, J.P., Kao, S.J. and Wan, S.M., 2009 Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea Continental Shelf Research 29 22402256 10.1016/j.csr.2009.08.017.CrossRefGoogle Scholar
Yang, S.L., Zhao, Q.Y. and Belkin, I.M., 2002 Temporal variation in the sediment load of the Yangtze river and the influencesof human activities Journal of Hydrology 263 5671 10.1016/S0022-1694(02)00028-8.CrossRefGoogle Scholar
Yang, S.Y., Jung, H.S. and Li, C.X., 2004 Two unique weathering regimesin the Changjiang and Huanghe drainage basins: geochemical evidence from river sediments Sedimentary Geology 164 1934 10.1016/j.sedgeo.2003.08.001.CrossRefGoogle Scholar
Zhang, C.S., Wang, L.J., Zhang, S. and Li, X.X., 1998 Geochemistry of rare earth elements in the mainstream of the Yangtze River, China Applied Geochemistry 13 451462 10.1016/S0883-2927(97)00079-6.CrossRefGoogle Scholar
Zhang, J., 1999 Heavy metal compositions of suspended sediments in the Changjiang (Yangtze River) estuary: significance of riverine transport to the ocean Continental Shelf Research 19 15211543 10.1016/S0278-4343(99)00029-1.CrossRefGoogle Scholar
Zhang, J., Huang, W.W., Liu, M.G. and Zhou, Q., 1990 Drainage basin weathering and major element transport of two large Chinese rivers (Huanghe and Changjiang) Journal of Geophysical Research-Oceans 95 1327713288 10.1029/JC095iC08p13277.CrossRefGoogle Scholar
Zhou, W., Chen, L.X., Zhou, M., Balsam, W. and Ji, J.F., 2010 Thermal identification of goethite in soils and sediments by diffuse reflectance spectroscopy Geoderma 155 419425 10.1016/j.geoderma.2010.01.001.CrossRefGoogle Scholar