Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-15T01:29:59.713Z Has data issue: false hasContentIssue false

The Rheological and Colloidal Properties of Bentonite Dispersions in the Presence of Organic Compounds V. Bentonite and Sodium Montmorillonite and Surfactants

Published online by Cambridge University Press:  28 February 2024

Thorsten Permien
Affiliation:
Institute of Inorganic Chemistry, Kiel University, Olshausenstraße 40, D-24098 Kiel, Germany
Gerhard Lagaly
Affiliation:
Institute of Inorganic Chemistry, Kiel University, Olshausenstraße 40, D-24098 Kiel, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The influence of surfactants on the flow behavior of sodium montmorillonite dispersions (2% w/w) was studied for a cationic (cetylpyridinium chloride, CPCl) and an anionic surfactant (sodium dodecylsulfate, SDS). When the dispersion pHs were >3.5 and <7, CPCl concentrations >10−4 M increased the shear stress but the Bingham yield value remained virtually unchanged (τo ≈ 100 mPa). At pH ≈ 7, the shear stress and yield point decreased with increasing CPCl concentration (τo from 430 to 100 mPa). The flow properties of sodium calcium bentonite dispersions were independent of pH and CPCl concentrations ≤ 10−4 M; they increased modestly at higher concentrations. At pH < 4, SDS addition to the sodium montmorillonite dispersions increased the shear stress and yield value to a maximum value (τo = 2100 mPa) at 10−3 M SDS; higher SDS concentrations reduced the shear stress and yield value. At pH > 4, the flow values decreased to a minimum value at 10−2 M SDS (τo from 430 to 50 mPa). The flow of the sodium calcium bentonite dispersions at pH > 4 was independent of SDS concentrations ≤ 10−3 mole/liter; at higher SDS concentrations, the flow values increased more strongly in sodium calcium bentonite than in sodium montmorillonite dispersions.

Surfactants influence the flow behavior of sodium montmorillonite dispersions by their action on the card-house networks in strongly acidic medium and, at higher pH, by the electroviscous effect. At the highest surfactant concentrations without flocculation, the shear stress and yield value are increased by interacting chains of opposed particles.

Addition of the surfactants increases the salt (NaCl) stability of the dispersions because the adsorbed surface active agents influence the counterion distribution between the Stern and the diffuse ionic layer.

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

References

Brandenburg, U., and Lagaly, G. 1988 . Rheological properties of sodium montmorillonite dispersions. Appl. Clay Sci. 3: 263279.CrossRefGoogle Scholar
Callaghan, I. C., and Ottewill, R. H. 1974 . Interparticle forces in montmorillonite gels. Disc. Faraday Soc. 57: 110118.CrossRefGoogle Scholar
Chan, D. Y. C., Pashley, R. M., and Quirk, J. P. 1984 . Surface potentials derived from co-ion exclusion measurements on homoionic montmorillonite and illite. Clays & Clay Miner. 32: 131138.CrossRefGoogle Scholar
Chou Chang, F. R., and Sposito, G. 1994 . the electrical double layer of a disc-shaped clay mineral particle: Effect of particle size. J. Colloid Interface Sci. 163: 1927.CrossRefGoogle Scholar
Fahn, R., Weiss, A., and Hofmann, U. 1953 . Über die Thixotropie bei Tonen. Ber. Dtsch. Keram. Ges. 30: 2125.Google Scholar
Fitzsimmons, R. F., Posner, A. M., and Quirk, J. P. 1970 . Electron microscopic and kinetic study of the flocculation of calcium montmorillonite. Israel J. Chem. 8: 301314.CrossRefGoogle Scholar
Fukushima, Y., 1984. X-ray diffraction study of aqueous montmorillonite emulsions (correctly: dispersions!) Clays & Clay Miner. 32: 320326.CrossRefGoogle Scholar
Güven, N., 1992a. Rheological aspects of aqueous smectite suspensions. In Clay-Water Interface and its Rheological Implications. Güven, N., and Pollastro, R. M., eds. CMS workshop lectures, Vol. 4. Boulder, Colorado: The Clay Mineral Soc., 81126.Google Scholar
Hogg, R., Healy, T. W., and Fuerstenau, D. W. 1966 . Mutual coagulation of colloidal dispersions. Trans. Farad. Soc. 62: 16381651.CrossRefGoogle Scholar
Hofmann, U., and Hausdorf, A. 1945 . Über das Sedimentvolumen und die Quellung von Bentonit. Kolloid Z. Z. Polymere 110: 117.CrossRefGoogle Scholar
Hofmann, U., Fahn, R., and Weiss, A. 1957 . Thixotropie bei Kaolinit und innerkristalline Quellung bei Montmorillonit. Kolloid Z.Z. Polymere 151: 97115.CrossRefGoogle Scholar
Hofmann, U., 1962. Die Tonminerale und die Plastizität des Tons. Keram. Z. 14: 1419.Google Scholar
Keller, W. D., and Matlack, K. 1990 . The pH of clay suspensions in the field and laboratory, and methods of measurement of their pH. Appl. Clay Sci. 5: 123133.CrossRefGoogle Scholar
Keren, R., Shainberg, I., and Klein, E. 1988 . Settling and flocculation value of sodium-montmorillonite particles in aqueous media. Soil Sci. Soc. Am. J. 52: 7680.CrossRefGoogle Scholar
Keren, R., 1989. Effect of clay charge density and adsorbed ions on the rheology of montmorillonite suspension. Soil Sci. Soc. Am. J. 53: 2529.CrossRefGoogle Scholar
Lagaly, G., 1986. Colloids. In Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 7, pp. 341367.Google Scholar
Lagaly, G., 1987. Clay-organic reactions: Problems and recent results. Proc. Internat. Clay Conf. Denver, 1985. Schultz, L. G., Olphen, H. van, and Mumpton, F. A., eds. Bloomington, Indiana: Clay Minerals Soc., 343351.Google Scholar
Lagaly, G., 1994a. Layer charge determination by alkylammonium ions. In Charge Characteristics of 2: 1 Clay Minerals. Mermut, A., ed. CMS workshop lectures, Vol. 6. Boulder, Colorado: The Clay Mineral Soc., pp. 146.Google Scholar
Lagaly, G., 1994b. Surface and interlayer reactions: Bentonites as adsorbents. Prof. Internat. Clay Conf. Adelaide 1993. (in press.)Google Scholar
Miller, S. E., and Low, P. F. 1990 . Characterization of the electrical double layer of montmorillonite. Langmuir 6: 572578.CrossRefGoogle Scholar
Norrish, K., 1954. The swelling of montmorillonite. Disc. Farad. Soc. 18: 120134.CrossRefGoogle Scholar
Olphen van, H., 1956. Forces between suspended bentonite particles. Clay Miner. 4: 204224.CrossRefGoogle Scholar
Olphen van, H., 1964. Internal mutual flocculation in clay suspensions. J. Colloid Sci. 19: 313322.CrossRefGoogle Scholar
Olphen van, H., 1977. An Introduction to Clay Colloid Chemistry. New York: J. Wiley and Sons.Google Scholar
O'Brien, N. R., 1971. Fabric of kaolinite and illite floccules. Clays & Clay Miner. 19: 353359.CrossRefGoogle Scholar
Permien, T., and Lagaly, G. 1994a . The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds. I. Flow behaviour of sodium montmorillonite in water-alcohol. Clay Miner. 29: 751760.Google Scholar
Permien, T., and Lagaly, G. 1994b . The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds. II. Flow behaviour of Wyoming bentonite in water-alcohol. Clay Miner. 29: 761766.Google Scholar
Permien, T., and Lagaly, G. 1994c . The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds. III. The effect of alcohols on the coagulation of sodium montmorillonite. Colloid Polymer Sci. 272: 13061312.CrossRefGoogle Scholar
Permien, T., and Lagaly, G. 1994d . The rheological and colloidal properties of bentonites in the presence of organic compounds. IV. Sodium montmorillonite in the presence of acids. Appl. Clay Min. 9: 251263.CrossRefGoogle Scholar
Quirk, J. P., 1986. Soil permeability in relation to sodicity and salinity. Phil. Trans. R. Soc. Lond. A 316: 297317.Google Scholar
Quirk, J. P., and Murray, R. S. 1991 . Towards a model for soil structure behaviour. Aust. J. Soil Res. 29: 829867.CrossRefGoogle Scholar
Ramsay, J. D. F., and Lindner, P. 1993 . Small-angle neutron scattering investigations of the structure of thixotropic dispersions of smectite clay colloids. J. Chem. Soc. Faraday Trans. 89: 42074214.CrossRefGoogle Scholar
Rand, B., Pekenc, E., Goodwin, J. W., and Smith, R. W. 1980 . Investigation into the existence of edge-face coagulated structures in Na-montmorillonite suspensions. J. Chem. Soc. Faraday I. 76: 225235.CrossRefGoogle Scholar
Rupprecht, H., and Gu, T. 1991 . Structure of adsorption layers of ionic surfactants at the solid/liquid interface. Colloid Polym. Sci. 269: 506522.CrossRefGoogle Scholar
Siffert, B., and Espinasse, P. 1980 . Adsorption of organic diacids and sodium polyacrylate onto montmorillonite. Clays & Clay Miner. 28: 381387.CrossRefGoogle Scholar
Stache, H., 1981 (ed.) . Tensidtaschenbuch, 2nd edition. Wien: Carl Hanser Verlag München.Google Scholar
Weiss, A., and Frank, R. 1969 . Über den Bau der Gerüste in thixotropen Gelen. Z. Naturforsch. 16b: 141142.Google Scholar
Weiss, A., 1962. Neuere Untersuchungen über die Struktur thixotroper Gele. Rheologica Acta 2: 292304.Google Scholar
Welzen, J. T. A. M., Stein, H. N., Stevels, J. M., and Siskens, C. A. M. 1981 . The influence of surface-active agents on kaolinite. J. Colloid Interface Sci. 81: 455467.CrossRefGoogle Scholar