Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-03T19:18:01.128Z Has data issue: false hasContentIssue false

Review of the Diffusion of Water and Pyridinein the Interlayer Space of Montmorillonite: Relevance to Kinetics of Catalytic Reactions in Clays

Published online by Cambridge University Press:  02 April 2024

Christopher Breen
Affiliation:
School of Chemical Sciences, National Institute for Higher Education Glasnevin, Dublin 9, Ireland
John M. Adams
Affiliation:
Edward Davis Chemical Laboratories, University College of Wales Aberystwyth, Dyfed, SY23 INE, United Kingdom
Christian Riekel
Affiliation:
Universität Hamburg, Institut für Angewandte Chemie, Martin-Luther-King Platz 6, 2000 Hamburg 13, Federal Republic of Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

With the current interest in the use of transition metal-exchanged phyllosilicates as catalysts for novel organic syntheses, investigations into the factors which affect the movement of reactant, product, and solvent molecules into and out of their interlamellar region are of considerable importance. Mixed organic-water intercalates of a Wyoming montmorillonite, exemplified by the Na-montmorillonitepyridine-water system which can form four different intercalates exhibiting basal spacing of 29.3, 23.3, 19.4, and 14.8 Å depending on the pyridine: water ratio, have been used as a model system. X-ray and neutron diffraction and quasielastic neutron scattering data relating to the interconversion of interlayer species indicate that access to and exit from the interlayer space is hindered at high partial pressures of water by a water-film diffusion barrier in the interparticulate voids which exist between the aggregated silicate layers. At lower water vapor pressures the rate-limiting step for interconversion from one intercalate to another is the rate of transport of reagents and products to and from the clay particles. Under conditions where these rates are fixed, the rate-limiting step is the rate of diffusion of the pyridine molecule in the lower-spacing intercalate. Processes which involve a change in basal spacing do not necessarily proceed via a single discrete step, but are also affected by the amount of water made available to the system. In organic reactions catalyzed in the interlamellar space of various cation-exchanged montmorillonites (e.g., the conversion of alk-1-enes to di-2,2’-alkyl ethers and the reaction of alcohols to form ethers), rate-determining steps similar to those found above are likely to be operative. In particular, for reactions carried out in the liquid phase, where mass transport is facile and where phase-transfer problems are avoided, such reactions are likely to be diffusion controlled.

Type
Review Article
Copyright
Copyright © 1985, The Clay Minerals Society

References

Adams, J. M., Ballantine, J. A., Graham, S. H., Laub, R. J., Purnell, J. H., Reid, P. I., Shaman, W. Y. M. and Thomas, J. M., 1978 Organic synthesis using sheet silicate intercalates: low temperature conversion of olefin to secondary ether Angew. Chemie Int. Ed. 17 282283.CrossRefGoogle Scholar
Adams, J. M., Ballantine, J. A., Graham, S. H., Laub, R. J., Purnell, J. H., Reid, P. I., Shaman, W. Y. M. and Thomas, J. M., 1979 Selective chemical conversions using sheet silicate intercalates: low temperature addition of water to 1-alkenes J. Catal. 58 239252.CrossRefGoogle Scholar
Adams, J. M. and Breen, C., 1982 The temperature stability of the ≥ 19.4 Å intercalates of the Na+-montmorillonite: pyridine/water system and the rate of their conversion to the 14.8 Å intercalate J. Colloid Interface Sci. 89 272289.CrossRefGoogle Scholar
Adams, J. M., Breen, C. and Riekel, C., 1979 Deuterium/ hydrogen exchange in interlamellar water in the 23.3 Å Na+-montmorillonite: pyridine/water intercalate J. Colloid Interface Sci. 68 214220.CrossRefGoogle Scholar
Adams, J. M., Breen, C. and Riekel, C., 1979 The diffusion of interlamellar water in the 23.3 Å Na+-montmo-rillonite: pyridine/H2O intercalate by quasielastic neutron scattering Clays & Clay Minerals 27 140144.CrossRefGoogle Scholar
Adams, J. M., Breen, C. and Riekel, C., 1980 Pyridine/ deutero-pyridine exchange in the 23.3 Å Na+-montmoril-lonite: pyridine/H2O intercalate J. Colloid Interface Sci. 74 103107.CrossRefGoogle Scholar
Adams, J. M., Breen, C. and Riekel, C., 1983 Deuterium/ hydrogen exchange in interlamellar water in the 23.3 Å Na+-montmorillonite: pyridine/water intercalate II. Activation energies J. Colloid Interface Sci. 94 380389.Google Scholar
Adams, J. M., Bylina, A. and Graham, S. H., 1982 Conversion of 1-hexene to di-2-hexyl ether using a Cu2+-smectite catalyst J. Catal. 75 190195.CrossRefGoogle Scholar
Adams, J. M., Clapp, T. V. and Clement, D. E., 1983 Catalysis by montmorillonites Clay Miner. 18 411421.CrossRefGoogle Scholar
Adams, J. M., Clement, D. E. and Graham, S. H., 1981 Low temperature reaction of alcohols to form t-butyl ethers using clay catalysts J. Chem. Res. 254255.Google Scholar
Adams, J. M., Clement, D. E. and Graham, S. H., 1982 Synthesis of methyl t-butyl ether from methanol and iso-butene using a clay catalyst Clays & Clay Minerals 30 129134.CrossRefGoogle Scholar
Adams, J. M., Davies, S. E., Graham, S. H. and Thomas, J. M., 1978 Ready production of benzophenone from di-phenylethylene catalysed by a synthetic hectorite J. Chem. Soc. Chem. Commun. 930931.CrossRefGoogle Scholar
Adams, J. M., Davies, S. E., Graham, S. H. and Thomas, J. M., 1979 Hydrogen exchange between 9,10-dihydroan-thracene and 1,1-diphenylethylene over a synthetic hectorite J. Chem. Soc. Chem. Commun. 527528.CrossRefGoogle Scholar
Adams, J. M., Graham, S. H., Reid, P. I. and Thomas, J. M., 1977 Chemical conversions using sheet silicates: ready dimerisation of diphenylethylene J. Chem. Soc. Chem. Commun. 67.CrossRefGoogle Scholar
Adams, J. M., Reid, P. I. and Walters, M. J., 1977 The cation exchange capacity of clays School Sci. Rev. 59 722725.Google Scholar
Ballantine, J. A., Davies, M., Purnell, J. H., Rayanakorn, M., Thomas, J. M. and Williams, K. J., 1981 Chemical conversion using sheet silicates: facile ester synthesis by direct addition of acids to alkenes J. Chem. Soc. Chem. Commun. 89.CrossRefGoogle Scholar
Ballantine, J. A., Purnell, H. J., Rayanakorn, M., Thomas, J. M. and Williams, K. J., 1981 Chemical conversions using sheet silicates: novel intermolecular elimination of ammonia from amines J. Chem. Soc. Chem. Commun. 910.CrossRefGoogle Scholar
Barrer, R. M., 1978 Zeolites and Clay Minerals as Sorbents and Molecular Sieves New York Academic Press 256338.Google Scholar
Barrer, R. M. and Robbins, A. B., 1953 Sorption of mixtures. Part I. Molecular sieve separations of permanent and inert gases Trans. Farad. Soc. 49 807815.CrossRefGoogle Scholar
Barrer, R. M. and Rees, L. V. C., 1954 Sorption of mixtures. Part 4. Molecular diffusion in crystals modified by polar sorbates Trans. Farad. Soc. 50 989999.CrossRefGoogle Scholar
Bennet, H. and Reed, R. A., 1971 Chemical Methods of Silicate Analysis London Academic Press 7179.Google Scholar
Brindley, G. W., Sharp, J. H., Patterson, J. H. and Narahari-Achar, B. W., 1967 Kinetics and mechanisms of dehy-droxylation processes I. Temperature and vapour pressure dependence of dehydroxylation of kaolinite Amer. Mineral. 52 201211.Google Scholar
Bülow, M., Strave, P., Finger, G., Redszus, C., Erhardt, K., Schirmer, W. and Kärger, J., 1980 Sorption kinetics of n-hexane on MgA zeolites of different crystal sizes J. Chem. Soc. Faraday Trans. l 76 597615.CrossRefGoogle Scholar
Bylina, A., Adams, J. M., Graham, S. H. and Thomas, J. M., 1980 Chemical conversions using sheet silicates: a simple method for producing methyl t-butyl ether (MBTE) J. Chem. Soc. Chem. Commun. 10031004.CrossRefGoogle Scholar
Cebula, D. J., Thomas, R. K. and White, J. W., 1981 Diffusion of water in Li-montmorillonite studied by quasi-elastic neutron scattering Clays & Clay Minerals 29 241248.CrossRefGoogle Scholar
Garner, W. E., 1955 Chemistry of the Solid State London Butterworths 213231.Google Scholar
Hojabri, F., 1971 Dimerisation of propylene and its uses for isoprene manufacture J. App. Chem. Biotech. 21 8789.CrossRefGoogle Scholar
U.S. Patent 1966 3 287.Google Scholar
Kärger, J. and Caro, J., 1977 Interpretation and correlation of zeolitic diffusivities obtained from nuclear magnetic resonance and sorption experiments J. Chem. Soc. Faraday Trans. l 73 13631376.CrossRefGoogle Scholar
Moore, R. M. and Katzer, J. R., 1972 Counterdiffusion of liquid hydrocarbons in type Y zeolite: effect of molecular size, molecular type, and direction of diffusion J. Amer. Inst. Chem. Eng. 18 816824.CrossRefGoogle Scholar
Neutron Beam Facilities at the HFR Available for Users (1977) Institut Laue-Langevin, Grenoble, France. Riekel, C. (1978) Kinetic study of NH3/ND3 exchange in TaS2 by neutron diffraction: Solid State Comm. 28, 385387.Google Scholar
Riekel, C. and Fischer, H. O., 1979 A neutron diffraction study on the intercalation of deuteropyridine into tantalum disulphide J. Solid State Chem. 28 181190.CrossRefGoogle Scholar
Riekel, C., Heideman, A., Fender, B. E. F. and Stirling, G. C., 1979 A study of the motions of NH3 in TaS2 by quasielastic neutron scattering J. Chem. Phys. 71 530537.CrossRefGoogle Scholar
Riekel, C. and Schöllhorn, R., 1976 A neutron diffraction study on the intercalation of ammonia into tantalum disulphide Mat. Res. Bull. 11 369376.CrossRefGoogle Scholar
Ross, D. K., Hall, P. L., Stucki, J. W. and Banwart, W. L., 1980 Neutron scattering methods of investigating clay systems Advanced Chemical Methods for Soil and Clay Minerals Research Holland D. Riedel 93168.CrossRefGoogle Scholar
Theng, B. K. G., 1974 Chemistry of Clay Organic Reactions London Hilger 2023.Google Scholar
Van Olphen, H. and Deeds, C. T., 1961 Stepwise hydration of clay-organic complexes Nature 194 176177.CrossRefGoogle Scholar
Weber, J. W. and Roy, R., 1965 Dehydroxylation of ka-olinite, dickite and halloysite: heats of reaction and kinetics of dehydration at pH2O = 15 p.s.i Amer. Mineral. 50 10381045.Google Scholar
Yucel, H. and Ruthven, D. M., 1980 Diffusion in 4A zeolite. Study of the effect of crystal size J. Chem. Soc. Faraday Trans. l 76 6070.CrossRefGoogle Scholar
Yucel, H. and Ruthven, D. M., 1980 Diffusion in 5A zeolite. Study of the effect of crystal size J. Chem. Soc. Faraday Trans. l 76 7183.CrossRefGoogle Scholar