Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T17:40:58.405Z Has data issue: false hasContentIssue false

Rehydration of Zn-Al Layered Double Hydroxides

Published online by Cambridge University Press:  28 February 2024

F. Kooli
Affiliation:
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
C. Depège
Affiliation:
Laboratoire de Physico-Chimie des Matériaux, URA CNRS 444, Université Blaise Pascal, 63177 Aubière Cedex, France
A. Ennaqadi
Affiliation:
Laboratoire de Physico-Chimie des Matériaux, URA CNRS 444, Université Blaise Pascal, 63177 Aubière Cedex, France
A. de Roy
Affiliation:
Laboratoire de Physico-Chimie des Matériaux, URA CNRS 444, Université Blaise Pascal, 63177 Aubière Cedex, France
J. P. Besse
Affiliation:
Laboratoire de Physico-Chimie des Matériaux, URA CNRS 444, Université Blaise Pascal, 63177 Aubière Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Rehydration is shown to be straightforward for the reconstruction of polyoxometallate-pillared layered double hydroxides. Zn-Al hydrotalcite-like minerals were prepared with Zn/Al ratios of 1 to 5 by coprecipitation at pH 7. Good crystallinity was obtained for samples with Zn/Al ratios above 2. Thermal decomposition was achieved by calcining the samples at 300 to 900 °C. The calcined samples were exposed to decarbonated water, with or without hydrothermal treatment to evaluate reconstruction of the hydrotalcite-like minerals by rehydration. Restoration of the hydrotalcite-like structure was found to be independent of the Zn/Al ratios for samples calcined between 300 and 400 °C; however, asecond phase, aluminum hydroxide or zinc oxide, was generally detected. A spinel phase, formed during the calcination of samples at temperatures above 600 °C, inhibited reconstruction of the hydrotalcite-like phase. The rehydrated hydrotalcite-like minerals had Zn/Al ratios close to 2, irrespective of the chemistry of the starting material.

Type
Research Article
Copyright
Copyright © 1997, The Clay Minerals Society

References

Bish, D.L. and Brindley, G.W.. 1977. A reinvestigation of takovite, a nickel aluminium hydroxy-carbonate of the pyroaurite group. Am Mineral 62: 458464.Google Scholar
Brindley, W. and Kikkawa, W.. 1979. A crystal-chemical study of Mg,Al and Ni,Al hydroxy-perchlorates and hydroxy-carbonates. Am Mineral 64: 836843.Google Scholar
Cavani, F., Trifiro, F. and Vaccari, A.. 1991. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal Today 11: 173291.CrossRefGoogle Scholar
Chibwe, K. and Jones, W.. 1989. Intercalation of organic and inorganic anions into layered double hydroxides. J Chem Soc, Chem Commun 926927.Google Scholar
Chibwe, M. and Pinnavaia, T.J.. 1993. Stabilization of a cobalt (II) phthalocyanine oxidation catalyst by intercalation in a layered double hydroxide host. J Chem Soc, Chem Commun 278280.Google Scholar
Clause, O., Rebours, B., Merlen, E., Trifiro, F. and Vaccari, A.. 1992. Preparation and characterization of nickel-aluminium mixed oxides obtained by thermal decomposition of hydrotalcite-type precursors. J Catal 133: 231246.CrossRefGoogle Scholar
Courty, P. and Marcilly, C.. 1983. A scientific approach to the preparation of bulk mixed oxide catalysts. In: Poncelet, G., Grange, P., Jacobs, P.A., editors. Preparation of catalysts III. Amsterdam: Elsevier Science. p 485517.Google Scholar
de Roy, A. and Besse, J.P.. 1991. Evolution of protonic conduction in some synthetic anionic clays. Solid State Ionics 46: 95101.CrossRefGoogle Scholar
de Roy, A., Forano, C., El Malki, K. and Besse, J.P.. 1992. Anionic clays: Trends in pillaring chemistry. In: Occelli, M.I., Robson, H.E., editors. Synthesis of microporous materials, vol 2. New York: Van Nostrand Reinhold. p 108168.Google Scholar
Dupuis, J., Battut, J.P., Fawal, Z., Hajjimohamad, H., de Roy, A. and Besse, J.P.. 1990. Nuclear magnetic resonance of protons in the hydrotalcite-like compound Zn2/3Al1/3(OH)2Cl1/3.nH2O. Solid State Ionics 42: 251255.CrossRefGoogle Scholar
El Malki, K.. 1991. Synthèse et caractérisation de nouveaux hydroxydes doubles lamellaires. Etude des échanges anioniques et de la réticulation. Etude des propriétés électriques et magnétiques [Ph. D. thesis]. Aubiere, France: Université Blaise Pascal. 337 p.Google Scholar
Gastuche, M.C., Brown, G. and Mortland, M.M.. 1967. Mixed Mg-Al hydroxides—I: Preparation and characterization of compounds. Clays Clay Miner 7: 177192.CrossRefGoogle Scholar
Hernandez-Moreno, M.J., Ulibarri, M.A., Rendon, J.L. and Serna, C.J.. 1985. IR characteristics of hydrotalcite-like compounds. Phys Chem Miner 12: 3438.CrossRefGoogle Scholar
Kooli, F., Kosuge, K., Hibino, T. and Tsunashima, A.. 1993. Synthesis and properties of Mg-Zn-Al-SO4 hydrotalcite-like compounds. J Mater Sci 28: 27692773.CrossRefGoogle Scholar
Kooli, F., Ulibarri, M.A. and Rives, V.. 1994. Vanadate-pillared hydrotalcite containing transition metal cations. Mater Sci Forum 152: 375378.CrossRefGoogle Scholar
Kooli, F., Ulibarri, M.A. and Rives, V.. 1995. Preparation and study of decavanadate-pillared hydrotalcite-like anionic clays containing transition metal cations in the layers. 1. Samples containing nickel-aluminum prepared by anionic exchange and reconstruction. Inorg Chem 34: 51145121.CrossRefGoogle Scholar
Kopka, H., Beneke, K. and Lagaly, G.. 1988. Anionic surfactants between double metal hydroxide layers. J Colloid Interface Sci 123: 427436.CrossRefGoogle Scholar
Martin, K.J. and Pinnavaia, T.J.. 1986. Halide ion reactivity in layered double hydroxides as supported anionic reagents. J Am Chem Soc 108: 541542.CrossRefGoogle ScholarPubMed
Michalowicz, A.. 1991. Logiciels pour la chimie. Paris: Société Française de Chimie. p 102103.Google Scholar
Miyata, S.. 1975. The synthesis of hydrotalcite-like compounds and their structures and physico-chemical properties—I: The systems Mg2+–Al3+-NO3–, Mg2+ –Al3+-Cl, Mg2+-Al3+-ClO4–, Ni2+–Al3+–Cl and Zn2+–Al3+–Cl. Clays Clay Miner 23: 369375.CrossRefGoogle Scholar
Miyata, S.. 1980. Physico-chemical properties of synthetic hydrotalcites in relation to composition. Clays Clay Miner 28: 5056.CrossRefGoogle Scholar
Miyata, S.. 1983. Anionic exchange properties of hydrotalcite-like compounds. Clays Clay Miner 31: 305311.CrossRefGoogle Scholar
Rebours, B., d'Espinose de la Caillerie, J.P. and Clause, O.. 1994. Decoration of nickel and magnesium oxide crystallites with spinel-type phases. J Am Chem Soc 116: 17071717.CrossRefGoogle Scholar
Reichle, W.T.. 1985. Catalytic reactions by thermally activated synthetic anionic clay minerals. J Catal 94: 547557.CrossRefGoogle Scholar
Rey, F., Fornés, V. and Rojo, J.M.. 1992. Thermal decomposition of hydrotalcites. An infrared and nuclear magnetic resonance spectroscopic study. J Chem Soc, Faraday Trans 88: 22332238.CrossRefGoogle Scholar
Sato, T., Fujita, H., Endo, T., Shimada, M. and Tsunashima, A.. 1988. Synthesis of hydrotalcite-like compounds and their physico-chemical properties. React Solids 5: 219228.CrossRefGoogle Scholar
Sato, T., Tezuka, M., Endo, T. and Shimada, M.. 1987. Removal of sulfuroxyanions by magnesium aluminum oxides and their thermal decomposition. J Chem Technol Biotechnol 39: 275285.CrossRefGoogle Scholar
Sato, T., Wakabayashi, T. and Shimada, M.. 1986. Adsorption of various anions by magnesium aluminum oxide (Mg0.7AI0.3O1.15). Ind Eng Chem Res 25: 8992.CrossRefGoogle Scholar
Shannon, R.D. and Prewitt, C.T.. 1969. Table of effective ionic radii. Acta Crystallogr B25: 925946.Google Scholar
Suzuki, E., Okamoto, M. and Ono, Y.. 1989. Catalysis by interlayer anions of a synthetic hydrotalcite-like mineral in a halide exchange between organic halides. Chem Lett 14851486.CrossRefGoogle Scholar