Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-14T15:17:35.415Z Has data issue: false hasContentIssue false

Regular Solution Site-Mixing Model for Chlorites

Published online by Cambridge University Press:  02 April 2024

R. K. Stoessell*
Affiliation:
Department of Earth Sciences, University of New Orleans, New Orleans, Louisiana 70148
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Activity expressions are presented for a six end-member, regular solution, site-mixing model for chlorites. The end members are ideal 14-Å chlorites for which experimental stability data are lacking. Estimates were made of the standard state 25°C and 1 bar molar 3rd law entropies, volumes, and the Maier-Kelley heat capacity coefficients. Experimental stability data from the literature for 14-Å chlorites were used with different sets of exchange energies, for cations on adjacent sites, to compute estimates of the standard state chemical potentials of the end members at 25°C and 1 bar. More experimental data are needed for an adequate definition of the exchange energies and the standard state chemical potentials. The model was applied to diagenesis in clastic reservoirs. Aqueous activity ratios of Mg2+:Fe2+ were computed as an equilibrium function of the corresponding molar ratios in authigenic chlorites. The aqueous activity ratio was independent of the chlorite Al content at a constant molar ratio of Mg2+:Fe2+ in the chlorite. The model predicts a wide range of molar Mg2+:Fe2+ ratios in authigenic chlorites in equilibrium with reservoir fluids. Trends in these molar ratios should be independent of the Al content in the chlorites. The model can be applied directly to 7-Å chlorites when experimental data become available to estimate the various thermodynamic parameters of the 7-Å end members.

Резюме

Резюме

Представлены выражения для активности для модели хлоритов, основанной на шести конечных членах и регулярном растворе. Конечные члены являются идеальными 14 Å хлоритами, для которых экспериментальные данные по стабильности не имеются. Оценивались молярные энтропие (3 закон), объемы и коэффициенты теплоемкости Майера-Келлея для стандартного состояния 25°С и 1 бара. Экспериментальные данные по стабильности, имеющиеся в литературе для 14 Å хлоритов, использовались с различными энергиями обмена соседних катионов для расчета химических потенциалов конечных членов при стандартном состоянии 25°С и 1 бара. Однако для соответствующего определения энергий обмена и химических потенциалов при стандартном состоянии необходимы дополнительные экспериментальные данные. Эта модель применялась для диагенеза в кластических резервуарах. Рассчитывались отношения водных активностей Mg2+:Fe2+ как функции равновесия соответствующих молярных отношений в аутигенных хлоритах. При постоянном молярном отношении Mg2+:Fe2+ в хлорите отношение водных активностей не зависило от содержания Al в этом минерале. Эта модель предсказывает широкий диапазон значений молярных отношений Mg2+:Fe2+ в аутигенных хлоритах в равновесии с жидкостями резервуара. Тенденции изменений этих молярных отношений не должны зависеть от содержания Al в хлорите. Модель может непоердственно применяться к 7 Å хлоритам, если имеются экспериментальные данные для определения различных термодинамических параметров 7 Å конечных членов. [E.G.]

Resümee

Resümee

Aktivitätsausdrücke werden für ein sechs Endglieder enthaltendes, reguläres Lösungs-Platz-mischungsmodell für Chlorite angegeben. Die Endglieder sind ideale 14-Å Chlorite, für die es keine experimentellen Stabilitätsdaten gibt. Es wurden Schätzungen für den Standardzustand der molaren (3. Hauptsatz-)Entropie bei 25°C und 1 Bar, das Volumen, und die Maier-Kelley Wärmekapazitätskoeffi-zienten gemacht. Experimentelle Stabilitätsdaten aus der Literatur für 14-Å Chlorite wurden zusammen mit verschiedenen Austauschenergien für Kationen auf benachbarten Plätzen verwendet, um Schätzungen für die Standardzustände der chemischen Potentiale der Endglieder bei 25°C und 1 Bar zu berechnen. Es werden mehr experimentelle Daten für eine angemessene Definition der Austauschenergien und der Standardzustände der chemischen Potentiale benötigt. Das Modell wurde auf die Diagenese in klastischen Bereichen angewandt. Das Aktivitätsverhältnis in wässriger Lösung war bei einem konstanten molaren Mg2+:Fe2+-Verhältnis im Chlorit unabhängig vom Al-Gehalt des Chlorites. Das Modell sagt einen großen Bereich von molaren Mg2+:Fe2+-Verhältnissen in authigenen Chloriten voraus, die im Gleichgewicht mit den Vorratslösungen sind. Trends in diesen molaren Verhältnissen sollten unabhängig vom Al-Gehalt der Chlorite sein. Das Modell kann direkt auf 7-Å Chlorite angewendet werden, wenn experimentelle Daten zur Vergügung stehen, um die verschiedenen thermodynamischen Parameter der 7-Å Endglieder abzuschätzen. [U. W.]

Résumé

Résumé

On présente des expressions d'activité pour un modèle à 6 membres terminaux, à solution regulière, et à sites mélangés pour des chlorites. Les membres terminaux sont des chlorites idéales de 14 Å pour lesquelles des données expérimentales de stabilité manquent. On a estimé les entropies de 3eme loi, les volumes, et les coefficients de capacité de rétention de chaleur de Maier-Kelley pour l’état standard à 25°C et 1 bar molaire. Les données expérimentales de stabilité trouvées dans la littérature pour des chlorites de 14 Å ont été utilisées avec différents ensembles d’énergies d’échange, pour des cations sur des sites adjacents, pour computer des estimations de potentiels chimiques à l’état standard des membres terminaux à 25°C et 1 bar. Le modèle a été appliqué à la diagénèse dans des reservoirs élastiques. On a computé les proportions d'activité aqueuse pour Mg2+:Fe2+ en tant que fonction d’équilibre des proportions molaires correspondantes dans des chlorites authigéniques. La proportion d'activité aqueuse était indépendante du contenu en chlorite Al pour une proportion molaire constante de Mg2+:Fe2+ dans la chlorite. Le modèle prédit une large gamme de proportions molaires Mg2+:Fe2+ dans des chlorites authigéniques en équilibre avec les fluides du réservoir. Les tendances dans ces proportions molaires devraient être indépendantes du contenu en Al des chlorites. Le modèle pourra être directement appliqué à des chlorites de 7 Å lorsque l'on aura des données expérimentales pour estimer les paramètres thermodynamiques variés de membres terminaux de 7 Å [D.J.]

Type
Research Article
Copyright
Copyright © 1984, The Clay Minerals Society

References

Aagaard, P. and Helgeson, H. C., 1983 Activity/composition relations among silicates and aqueous solutions: II. Chemical and thermodynamic consequences of ideal mixing of atoms on homological sites in montmorillonites, illites, and mixed-layer clays Clays & Clay Minerals 31 207217.CrossRefGoogle Scholar
Alford, E. V., 1983 Compositional variations of authigenic chlorites in the Tuscaloosa Formation, Upper Cretaceous, of the Gulf Coast Basin New Orleans, Louisiana M.S. thesis, Univ. New Orleans.Google Scholar
Bailey, S. W. and Brown, B. E., 1962 Chlorite polytypism: 1. Regular and semi-random one-layer structures Amer. Mineral. 47 819850.Google Scholar
Deer, W. A., Howie, R. A. and Zussman, J., 1962 Rock Forming Minerals. Vol. 3 Sheet Silicates Hong Kong Longman.Google Scholar
Foster, M. D., 1962 Interpretation of the composition and a classification of the chlorites U.S. Geol. Surv. Prof. Pap. 414–A A1A27.Google Scholar
Guggenheim, E. A., 1952 Mixtures Oxford Clarendon Press.Google Scholar
Helgeson, H. C. and Aagaard, P., 1984 Activity/composition relations among silicates: I. Thermodynamics of in-trasite mixing and substitutional order/disorder in minerals Amer. J. Sci. 283.Google Scholar
Helgeson, H. C., Delany, J. M., Nesbitt, H. W. and Bird, D. K., 1978 Summary and critique of the thermodynamic properties of rock-forming minerals Amer. J. Sci. 278–A 1213.Google Scholar
Helgeson, H. C. and Kirkham, D. H., 1974 Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. I. Summary of the thermodynamic/electrostatic properties of the solvent Amer. J. Sci. 274 10891198.CrossRefGoogle Scholar
Helgeson, H. C. and Kirkham, D. H., 1974 Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. II. Debye-Huckel parameters for activity coefficients and relative partial mo-lal properties Amer. J. Sci. 274 11991261.CrossRefGoogle Scholar
Helgeson, H. C. and Kirkham, D. H., 1976 Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. III. Equation of state for aqueous species at infinite dilution Amer. J. Sci. 276 97240.CrossRefGoogle Scholar
Helgeson, H. C., Kirkham, D. H. and Flowers, G. C., 1981 Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 5 kb and 600°C Amer. J. Sci. 281 12491516.CrossRefGoogle Scholar
Hey, M. H., 1954 A new review of the chlorites. Mineral Mag. 30 277292.Google Scholar
Kelley, K. K. (1960) Contributions to the data on theoretical metallurgy. XIII. High-temperature heat content, heat capacity, and entropy data for the elements and inorganic compounds: U.S. Bur. Mines Bull. 584, 232 pp.Google Scholar
Kittrick, J. A., 1982 Solubility of two high-Mg and two high-Fe chlorites using multiple equilibria Clays & Clay Minerals 30 167179.CrossRefGoogle Scholar
Nriagu, J. O., 1975 Thermochemical approximations for clay minerals Amer. Mineral. 60 834839.Google Scholar
Stoessell, R. K., 1977 Geochemical studies of two magnesium silicates, sepiolite and kerolite Berkeley Ph.D. thesis, Univ. California at.Google Scholar
Stoessell, R. K., 1979 A regular solution site-mixing model for illites Geochim. Cosmochim. Acta 43 11511159.CrossRefGoogle Scholar
Stoessell, R. K., 1981 Refinements in a site-mixing model for illites: local electrostatic balance and the quasi-chemical approximation Geochim. Cosmochim. Acta 45 17331741.CrossRefGoogle Scholar
Stoessell, R. K. and Hay, R., 1978 The geochemical origin of sepiolite and kerolite at Amboseli, Kenya Contrib. Mineral. Petrol. 68 255267.CrossRefGoogle Scholar
Tardy, Y. and Garrels, R. M., 1974 A method of estimating the Gibbs energies of formation of layer silicates Geochim. Cosmochim. Acta 38 11011116.CrossRefGoogle Scholar
Tardy, Y. and Fritz, B., 1981 An ideal solid solution model for calculating solubility of clay minerals Clay Miner. 16 361373.CrossRefGoogle Scholar
Wagman, D. D., Evans, W. H., Parker, V. V., Halow, I., Bailey, S. S. M., and Schumm, R. H. (1969) Selected values of chemical thermodynamic properties. Tables for elements 35 through 53 in the standard order of arrangement: Nat. Bur. Stand. Tech. Note 270–4, 141 pp.Google Scholar
Walther, J. V. and Helgeson, H. C., 1977 Calculation of the thermodynamic properties of aqueous silica and the solubility of quartz and its polymorphs at high pressures and temperatures Amer. J. Sci. 277 13151351.CrossRefGoogle Scholar
Weaver, C. E. and Pollard, L. D., 1975 The Chemistry of Clay Minerals New York Elsevier.Google Scholar