Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T19:22:07.120Z Has data issue: false hasContentIssue false

Refinement of the Crystal Structure of Cronstedtite-1T

Published online by Cambridge University Press:  28 February 2024

Jiří Hybler*
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 18221 Praha 8, Czech Republic
Václav Petříček
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 18221 Praha 8, Czech Republic
Slavomil Ďurovič
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, 84236 Bratislava, Slovakia
Ĺubomír Smrčok
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, 84236 Bratislava, Slovakia
*
E-mail of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The crystal structure of cronstedfite-1T was refined in space group P31m, using two crystals: a triangular tabular crystal from Herja, Romania and a conical crystal from Lostwithiel, Cornwall, England. The Herja sample has the composition of (Fe2+2.20Fe3+0.80)(Si1.20Fe3+0.78Al0.02)O5(OH)4 and the Lostwithiel sample has the composition of (Fe2+2.32Fe3+0.68)(Si1.32Fe3+0.66Al0.02)O5(OH)4. The results of refinements are as follows: a = 5.512(1) Å, c = 7.106(1) A, R = 3.07%, and 342 independent reflections; and a = 5.503(1), c = 7.104(1) Å, R = 2.24%, and 335 independent reflections for the Herja and Lostwithiel samples, respectively. The structure consists of one tetrahedral and one octahedral sheet. There is one octahedral site, M1, occupied by Fe only, and one tetrahedral site, T1, occupied by Si and Fe in the ratio of 0.617(8):0.383 (Herja) and 0.699(6):0.301 (Lostwithiel). Positions of two hydrogen atoms were determined from a difference map for the Lostwithiel data. The ditrigonalization angle of the tetrahedral sheet is α = −11.5° (Herja) and α = −11.1° (Lostwithiel), and the structures have a Franzini-layer type of B. The crystals studied are affected by ± b/3 stacking faults which produced slight streaking of h - k ≠ 3n reflections.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

References

Anderson, C.S. and Bailey, S.W., 1981 A new cation ordering pattern in amesite-2H 2 American Mineralogist 66 185195.Google Scholar
Bailey, S.W., 1969 Polytypism of trioctahedral 1:1 layer silicates Clays and Clay Minerals 17 355371 10.1346/CCMN.1969.0170605.CrossRefGoogle Scholar
Bailey, S.W. and Bailey, S.W., 1988 Polytypism of 1:1 layer silicates Hydrous Phyllosilicates (Exclusive of Micas), Reviews in Mineralogy, Volume 19 Washington, D.C. Mineralogical Society of America 927 10.1515/9781501508998-007.CrossRefGoogle Scholar
Brigatti, M.F. Galli, E. Medici, L. and Poppi, L., 1997 Crystal structure of aluminian lizardite-2H 2 American Mineralogist 82 931935 10.2138/am-1997-9-1010.CrossRefGoogle Scholar
Clegg, W., 1981 Faster data collection without loss of precision. An extension of the learnt profile method Acta Crystallographica A37 2228 10.1107/S0567739481000053.CrossRefGoogle Scholar
Dornberger-Schiff, K. and Ďurovič, S., 1975 OD-interpre-tation of kaolinite-type structures-I: Symmetry of kaolinite packets and their stacking possibilities Clays and Clay Minerals 23 219229 10.1346/CCMN.1975.0230310.CrossRefGoogle Scholar
Dornberger-Schiff, K. and Ďurovič, S., 1975 OD-interpre-tation of kaolinite-type structures - II: The regular polyty-pes (MDO-polytypes) and their derivation Clays and Clay Minerals 23 231246 10.1346/CCMN.1975.0230311.CrossRefGoogle Scholar
Dowty, E., 1991 ATOMS, a computer program for displaying structures Shape Software, Kingsport, Tennesse .Google Scholar
Ďurovič, S., 1981 OD-Charakter, Polytypie und Identifikation von Schichtsilikaten Fortschritte der Mineralogie 59 191226.Google Scholar
Ďurovič, S., 1992 Layer stacking in general polytypie structures International Tables for Crystallography, Volume C .Google Scholar
Ďurovič, S., 1995 Troubles with cronstedtite-IM Geologica Carpathica - Clays .Google Scholar
Ďurovič, S., 1997 Cronstedtite-IM and coexistence of 1M and 3T polytypes Ceramics-Silikáty 41 98104.Google Scholar
Franzini, M., 1969 The A and B mica layers and the crystal structure of sheet silicates Contributions to Mineralogy and Petrology 21 203224 10.1007/BF00371751.CrossRefGoogle Scholar
Geiger, C.A. Henry, D.L. Bailey, S.W. and Maj, J.J., 1983 Crystal structure of cronstedtite-2H 2 Clays and Clay Minerals 31 97108 10.1346/CCMN.1983.0310203.CrossRefGoogle Scholar
Guggenheim, S. and Eggleton, R.A., 1998 Modulated crystal structures of greenalite and caryopilite: A system with long-range, in-plane structural disorder in the tetrahedra sheet Canadian Mineralogist 36 163179.Google Scholar
Guggenheim, S. and Zhan, W., 1998 Effect of temperature on the structures of lizardite-1T and lizardite-2H 1 Canadian Mineralogist 36 15871594.Google Scholar
Hall, S.H. and Bailey, S.W., 1979 Cation ordering pattern in amesite Clays and Clay Minerals 27 241247 10.1346/CCMN.1979.0270401.CrossRefGoogle Scholar
Hybler, J., 1997 Determination of crystal structures of minerals affected by twinning Prague, Czech Republic Faculty of Sciences, Charles University.Google Scholar
Hybler, J., 1998 Polytypism of cronstedtite from Chvaletice and Litošice Ceramics-Silikáty 42 130131.Google Scholar
(1983) International Tables for Crystallography, Volume A D. Reidel Publishing Company, Dordrecht, Holland.Google Scholar
(1974) International Tables for X-ray Crystallography, Volume IV The Kynoch Press, Birmingham, England.Google Scholar
Ladd, M.F.C. and Palmer, R.A., 1977 Structure determination by X-ray crystallography New York Plenum 10.1007/978-1-4615-7930-4.CrossRefGoogle Scholar
Melimi, M., 1982 The crystal structure of lizardite-IT: Hydrogen bonds and polytypism American Mineralogist 67 587598.Google Scholar
Mellini, M. and Viti, C., 1994 Crystal structure of lizardite-1T from Elba, Italy American Mineralogist 79 11941198.Google Scholar
Mellini, M. and Zanazzi, P.F., 1987 Crystal structures of lizardite-1T and lizardite-2H 1 from Coli, Italy American Mineralogist 72 943948.Google Scholar
Miklos, D., 1975 Symmetry and polytypism of trioctahedral kaolin-type minerals Bratislava, Slovakia Institute of Inorganic Chemistry, Slovak Academy of Sciences.Google Scholar
Petříček, V. and Dusek, M., 1998 JANA98, Crystallographic computer program for standard, modulated and composite structures Institute of Physics, Prague .Google Scholar
Radoslovich, E.W., 1961 Surface symmetry and cell dimension of layer-lattice silicates Nature (London) 191 6768 10.1038/191067a0.CrossRefGoogle Scholar
Renner, B. and Lehmann, G., 1986 Correlation of angular and bond length distortions in TO4 units in crystals Zeitschrift für Kristallographie 175 4359.CrossRefGoogle Scholar
Robinson, K. Gibbs, G.V. and Ribbe, P.H., 1971 Quadratic elongation: A quantitative measure of distortion in coordination polyhedra Science 172 567570 10.1126/science.172.3983.567.CrossRefGoogle ScholarPubMed
Smrčok, L. Ďurovič, S. Petříček, V. and Weiss, Z., 1994 Refinement of the crystal structure of cronstedtite-3T Clays and Clay Minerals 42 544551 10.1346/CCMN.1994.0420505.CrossRefGoogle Scholar
Steadman, R., 1964 The structure of trioctahedral kaolin-type silicates Acta Crystallographica 17 924927 10.1107/S0365110X64002390.CrossRefGoogle Scholar
Steadman, R. and Nuttall, P.M., 1963 Polymorphism in cronstedtite Acta Crystallographica 16 18 10.1107/S0365110X63000013.CrossRefGoogle Scholar
Steadman, R. and Nuttall, P.M., 1964 Further polymorphism in cronstedtite Acta Crystallographica 17 404406 10.1107/S0365110X64000913.CrossRefGoogle Scholar
Templeton, D.H. and Templeton, L.K., 1978 Program AG-NOST C. University of California at Berkeley, Berkeley, California .Google Scholar
Toraya, H., 1981 Distortion of octahedra and octahedral sheets in M micas and the relation to their stability Zeitschrift für Kristallographie 157 173190.Google Scholar
Weiss, Z. Rieder, M. Chmielová, M. and Krajíček, J., 1985 Geometry of the octahedral coordination in micas American Mineralogist 70 747757.Google Scholar
Weiss, Z. Rieder, M. and Chmielovâ, M., 1992 Deformation of coordination polyhedra and their sheets in phyllosilica-tes European Journal of Mineralogy .CrossRefGoogle Scholar
Wiewióra, A. Rausell-Collom, J.A. and García-Gonzáles, T., 1991 The structure of amesite from Mount Sobotka: A nonstandard polytype American Mineralogist 76 647652.Google Scholar
Zheng, H. and Bailey, S.W., 1997 Refinement of an amesite-2H 1 polytype from Potmasburg, South Africa Clays and Clay Minerals 45 301310 10.1346/CCMN.1997.0450301.CrossRefGoogle Scholar
Zhukhlistov, A.P. and Zvyagin, B.B., 1998 Crystal structure of lizardite-1T from electron diffractometry data Kristal-lographiya 43 100910014.Google Scholar
Zvyagin, B.B., 1967 Electron Diffraction Analysis of Clay Mineral Structures New York Plenum Press 10.1007/978-1-4615-8612-8.CrossRefGoogle Scholar