Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T18:32:36.347Z Has data issue: false hasContentIssue false

Reductive Dissolution Kinetics of Al-Substituted Goethites

Published online by Cambridge University Press:  01 January 2024

Estela Gonzalez
Affiliation:
Departamento de Química e Ingeniería Química, Universidad Nacional del Sur, Av. Alem 1253, 8000 - Bahía Blanca, Argentina
María C. Ballesteros
Affiliation:
Departamento de Química e Ingeniería Química, Universidad Nacional del Sur, Av. Alem 1253, 8000 - Bahía Blanca, Argentina
Elsa H. Rueda*
Affiliation:
Departamento de Química e Ingeniería Química, Universidad Nacional del Sur, Av. Alem 1253, 8000 - Bahía Blanca, Argentina
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Several Al-substituted goethites were synthesized by hydrolysis of Fe3+ salt solutions. The kinetics of the reductive dissolution of these goethites in dithionite-ethylenediaminetetra acetic acid (D-EDTA) was studied at pH 5.5, at 303, 323 and 333 K. The initial dissolution rate (R) per unit of surface area decreases with Al substitution. In the sample with greater Al content (G″7), the kinetic profiles of the dissolved Fe fraction vs. time gave a small positive intercept. The kinetic profile of R as a function of EDTA initial concentration shows a significant weakening in the presence of Al. The maximum is flatter and wider in Al-substituted goethite than that of pure goethite. In sample G″7, where the Al content is 11.3 mol.% the maximum is obtained when the [D]:[EDTA] initial ratio is ∼4.5 vs. 2 in un-substituted goethite. These results can be attributed to the lesser density of the more active dimeric sites, the presence of more strongly bonded Al-O-Fe with regard to Fe-O and the small value for the ≡ Al-EDTA surface species constant. Activation energy (Ea) increases with Al substitution. Its value is doubled from GO (pure goethite) to G″7 (11.3 mol.% of Al). The frequency factor (A) acts in the opposite sense to Ea, but it is not sufficient to outweigh the effect of Ea.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

References

Ballesteros, M.C. Rueda, E.H. and Blesa, M.A., (1998) The influence of Fe(III) on the kinetics of goethite dissolution by EDTA Journal of Colloid and Interface Science 201 1319 10.1006/jcis.1997.5360.CrossRefGoogle Scholar
Baumgartner, E. Blesa, M.A. Marinovich, H.A. and Maroto, A.J.G., (1983) Heterogeneous electron transfer as a pathway in the dissolution of magnetite in oxalic acid solutions Inorganic Chemistry 22 22242226 10.1021/ic00158a002.CrossRefGoogle Scholar
Blesa, M.A. Morando, P.J. and Regazzoni, A.E., (1994) Chemical Dissolution of Metal Oxides Boca Raton, Florida, Ann Arbor, Michigan, London and Tokyo CRC Press 400 pp.Google Scholar
Borghi, E.B. Regazzoni, A.E. Maroto, A.J.G. and Blesa, M.A., (1989) Reductive dissolution of magnetite by solutions containing EDTA and FeII Journal of Colloid and Interface Science 130 299310 10.1016/0021-9797(89)90109-4.CrossRefGoogle Scholar
Bowers, A.R. and Huang, C.P., (1985) Adsorption characteristics of poly acetic amino acids onto hydrous γ-Al2O3 Journal of Colloid and Interface Science 105 197215 10.1016/0021-9797(85)90361-3.CrossRefGoogle Scholar
Cambier, P., (1986) Infrared study of goethite of varying crystallinity and particle size. I. Interpretation of OH and lattice vibration frequencies Clay Minerals 21 191200 10.1180/claymin.1986.021.2.08.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., (1996) The Iron Oxides. Structure, Properties, Reactions, Occurrence and Uses (Germany) VCH, Weinheim 573 pp.Google Scholar
Hazemann, J.L. Bérar, J.F. and Manceau, A., (1991) Rietveld studies of the aluminium-iron substitution in synthetic goethite Materials Science Forum 79–82 821826 10.4028/www.scientific.net/MSF.79-82.821.CrossRefGoogle Scholar
Jeanroy, E. Rajot, J.L. Pillon, P. and Herbillon, A.J., (1991) Differential dissolution of hematite and goethite in dithionite and its implications on soil yellowing Geoderma 50 7994 10.1016/0016-7061(91)90027-Q.CrossRefGoogle Scholar
Lewis, D.G. and Schwertmann, U., (1979) The influence of aluminium on the formation of iron oxides: III. Preparation of Al goethites in M KOH Clay Minerals 14 115126 10.1180/claymin.1979.014.2.04.CrossRefGoogle Scholar
Lewis, D.G. and Schwertmann, U., (1979) The influence of aluminium on the formation of iron oxides: IV. The influence of [Al], [OH], and temperature Clay Minerals 27 195200 10.1346/CCMN.1979.0270304.CrossRefGoogle Scholar
Lim-Nunez, R. Gilkes, R.J., Schultz, L.G. van Olphen, H. and Mumpton, F.A., (1987) Acid dissolution of synthetic metal-containing goethites and hematites Proceedings of the International Clay Conference, Denver Bloomington, Indiana The Clay Minerals Society 197 204.Google Scholar
Lin, C.F. and Benjamin, M.M., (1990) Dissolution kinetics of minerals in the presence of sorbing and complexing ligands Environmental Science Technology 24 126134 10.1021/es00071a016.CrossRefGoogle Scholar
Mann, S. Cornell, R.M. and Schwertmann, U., (1985) Highresolution transmission electron microscopic (HRTEM) study of aluminous goethites Clay Minerals 20 255262 10.1180/claymin.1985.020.2.09.CrossRefGoogle Scholar
McKeague, J.A. and Day, J.H., (1966) Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soils Canadian Journal of Soil Science 43 8396 10.4141/cjss63-011.CrossRefGoogle Scholar
Mehra, O.P. and Jackson, M.L., (1960) Iron oxide removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate Clays and Clay Minerals 7 317327 10.1346/CCMN.1958.0070122.CrossRefGoogle Scholar
Mendelovici, E. Yariv, S.H. and Villalva, R., (1979) Aluminum bearing goethite in Venezuelan laterites Clays and Clay Minerals 27 368372 10.1346/CCMN.1979.0270507.CrossRefGoogle Scholar
Murad, E. and Schwertmann, U., (1983) The influence of aluminium substitution and crystallinity on the Mössbauer spectra of goethite Clay Minerals 18 301312 10.1180/claymin.1983.018.3.07.CrossRefGoogle Scholar
Norrish, K. and Taylor, R.M., (1961) The isomorphous replacement of iron by aluminum in soil goethites Journal of Soil Science 12 294306 10.1111/j.1365-2389.1961.tb00919.x.CrossRefGoogle Scholar
Pollard, R.J. Pankhurst, Q.A. and Zientek, P., (1991) Magnetism in aluminous goethite Physics and Chemistry of Minerals 18 259264 10.1007/BF00202578.CrossRefGoogle Scholar
Ruan, H.D. and Gilkes, R.J., (1995) Acid dissolution of synthetic aluminous goethite before and after transformation to hematite by heating Clay Minerals 30 5565 10.1180/claymin.1995.030.1.06.CrossRefGoogle Scholar
Rueda, E.H. Grassi, R.L. and Blesa, M.A., (1985) Adsorption and dissolution in the system goethite/aqueous EDTA Journal of Colloid and Interface Science 106 243246 10.1016/0021-9797(85)90401-1.CrossRefGoogle Scholar
Rueda, E.H. Ballesteros, M.C. Grassi, R.L. and Blesa, M.A., (1992) Dithionite as a dissolving reagent for goethite in the presence of EDTA and citrate. Application to soil analysis Clays and Clay Minerals 40 575585 10.1346/CCMN.1992.0400512.CrossRefGoogle Scholar
Schulze, D.G., (1984) The influence of aluminum on iron oxides: VII. Unit cell dimensions of Al-substituted goethites and estimation of Al from them Clays and Clay Minerals 32 3644 10.1346/CCMN.1984.0320105.CrossRefGoogle Scholar
Schulze, D.G. and Schwertmann, U., (1984) The influence of aluminium on iron oxides: X. Properties of Al-substituted goethites Clay Minerals 19 521539 10.1180/claymin.1984.019.4.02.CrossRefGoogle Scholar
Schulze, D.G. and Schwertmann, U., (1987) The influence of aluminium on iron oxides: XIII. Properties of goethites synthesized in 0.3 M KOH at 25°C Clay Minerals 22 8392 10.1180/claymin.1987.022.1.07.CrossRefGoogle Scholar
Schwertmann, U., (1984) The influence of aluminium on iron oxides. IX. Dissolution of Al-goethites in 6 M HCl Clay Minerals 19 919 10.1180/claymin.1984.019.1.02.CrossRefGoogle Scholar
Schwertmann, U. and Carlson, L., (1994) Aluminum influence on iron oxides: XVII. Unit-cell parameters and aluminum substitution of natural goethites Soil Science Society of America Journal 58 256261 10.2136/sssaj1994.03615995005800010039x.CrossRefGoogle Scholar
Schwertmann, U. and Cornell, R.M., (1991) Iron Oxides in the Laboratory Weinheim, Germany VCH 137 pp.Google Scholar
Schwertmann, U. and Latham, M., (1986) Properties of iron oxides in some new Caledonian soils Geoderma 39 105123 10.1016/0016-7061(86)90070-4.CrossRefGoogle Scholar
Schwertmann, U. Friedl, J. Stanjek, H. and Schulze, D., (2000) The effect of Al on Fe oxides. XIX. Formation of Al-substituted hematite from ferrihydrite at 25°C and pH 4 to 7 Clays and Clay Minerals 48 159172 10.1346/CCMN.2000.0480202.CrossRefGoogle Scholar
Strauss, R. Brümmer, G.W. and Barrow, N.J., (1997) Effects of crystallinity of goethite: I. Preparation and properties of goethite of differing crystallinity European Journal of Soil Science 48 8799 10.1111/j.1365-2389.1997.tb00188.x.CrossRefGoogle Scholar
Torrent, J. Schwertmann, U. and Barrón, V., (1987) The reductive dissolution of synthetic goethite and hematite in dithionite Clay Minerals 22 329337 10.1180/claymin.1987.022.3.07.CrossRefGoogle Scholar
Wells, M.A. Gilkes, R.J. and Fitzpatrick, R.W., (2001) Properties and acid dissolution of metal-substituted hematites Clays and Clay Minerals 49 6072 10.1346/CCMN.2001.0490105.CrossRefGoogle Scholar
Wolska, E. and Schwertmann, U. (1993) The mechanism of solid solution formation between goethite and diaspore. Neues Jahrbuch für Mineralogie Monatshefte, 213233.Google Scholar
Wolska, E. Szajda, W. and Piszora, P., (1992) Determination of solid solution limits based on the thermal behavior of aluminum substituted iron hydroxides and oxides Journal of Thermal Analysis 38 21152122 10.1007/BF01979624.CrossRefGoogle Scholar
Wolska, E. Szajda, W. and Piszora, P., (1992) Synthetic solid solutions formed between goethite and diaspore Zeitschrift für Pflanzenernährung Düngung und Bodenkunde 155 479482 10.1002/jpln.19921550521.CrossRefGoogle Scholar