Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T06:16:44.089Z Has data issue: false hasContentIssue false

Reactivity of Callovo-Oxfordian Claystone and its Clay Fraction With Metallic Iron: Role of Non-Clay Minerals in the Interaction Mechanism

Published online by Cambridge University Press:  01 January 2024

Camille Rivard*
Affiliation:
Université de Lorraine, LIEC, UMR7360, Vandœuvre-lès-Nancy, F-54500, France CNRS, LIEC, UMR7360, Vandœuvre-lès-Nancy, F-54500, France
Manuel Pelletier
Affiliation:
Université de Lorraine, LIEC, UMR7360, Vandœuvre-lès-Nancy, F-54500, France CNRS, LIEC, UMR7360, Vandœuvre-lès-Nancy, F-54500, France
Nicolas Michau
Affiliation:
Andra, 1/7 rue Jean Monnet, Parc de la Croix Blanche, Châtenay-Malabry Cedex, F-92298, France
Angelina Razafitianamaharavo
Affiliation:
Université de Lorraine, LIEC, UMR7360, Vandœuvre-lès-Nancy, F-54500, France CNRS, LIEC, UMR7360, Vandœuvre-lès-Nancy, F-54500, France
Mustapha Abdelmoula
Affiliation:
Université de Lorraine, LCPME, UMR7564, Vandâuvre-lès-Nancy, F-54500, France CNRS, LCPME, UMR7564, Vandâuvre-lès-Nancy, F-54500, France
Jaafar Ghanbaja
Affiliation:
Université de Lorraine, IJL, Nancy, F-54000, France
Frédéric Villiéras
Affiliation:
Université de Lorraine, LIEC, UMR7360, Vandœuvre-lès-Nancy, F-54500, France CNRS, LIEC, UMR7360, Vandœuvre-lès-Nancy, F-54500, France
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In order to better understand the possible interactions between steel canisters and a claystone host rock, in this case the Callovo-Oxfordian rock (COx), the present study investigated in detail, under conditions relevant to high-level radioactive waste repositories (anoxic conditions, temperature of 90°C), the reactions between metallic iron and: (1) COx; (2) the clay fraction extracted from COx (CF); and (3) mixtures of CF with quartz, calcite, or pyrite. Batch experiments were then carried out in the presence of NaCl-CaCl2 background electrolyte, for durations of 1, 3, and 9 months. Solid and liquid end-products were characterized by a combination of techniques including liquid analyses, transmission and scanning electron microscopies, X-ray diffraction, N2 adsorption at 77 K, and Mössbauer spectroscopy. The interaction between CF and metallic iron appeared to proceed by means of pathways similar to those illustrated in previous studies on interactions between metallic iron and purified clays. In spite of the many similarities with previous studies, significant differences were observed between the behavior of COx and CF, particularly in terms of pH and Eh evolution, iron consumption, chemical composition of the neoformed particles, and textural evolution. Such differences demonstrate the important role played by non-clay minerals in reaction pathways. The addition of carbonates or pyrite to CF did not lead to significant change in reactivity. In contrast, under the conditions used in the present study, i.e. for relatively low iron:clay ratios, the presence of quartz strongly influenced reaction pathways. In the presence of quartz, magnetite was observed only in trace abundances whereas the amounts of magnetite were significant in experiments without quartz. Furthermore, filamentous serpentine particles with a small Al:Si ratio appeared which could develop from an FeSiAl gel that only forms in the presence of quartz. Considering that most clay rocks currently being considered for radioactive waste disposal contain significant amounts of quartz, the results obtained in the present study may be of significant interest for predicting the long-term behavior of clay barriers in such sites.

Type
Article
Copyright
Copyright © Clay Minerals Society 2015

References

Ačai, P. Sorrenti, E. Gorner, T. Polakovic, M. Kongolo, M. and de Donato, P., 2009 Pyrite passivation by acid investigated by inverse liquid chromatography Colloids and Surfaces A: Physicochemical and Engineering Aspects 337 3946.CrossRefGoogle Scholar
Bailey, S.W., 1988 Odinite, a new dioctahedral-trioctahedral Fe3+-rich 1-1 clay mineral Clay Minerals 23 237247.CrossRefGoogle Scholar
Balko, B.A. Bosse, S.A. Cade, A.E. Jones-Landry, E.F. Amonette, J.E. and Daschbach, J.L., 2012 The effect of smectite on the corrosion of iron metal Clays and Clay Minerals 60 136152.CrossRefGoogle Scholar
Beaucaire, C. Tertre, E. Ferrage, E. Grenut, B. Pronier, S. and Madé, B., 2012 A thermodynamic model for the prediction of pore water composition of clayey rock at 25 and 80°C — comparison with results from hydrothermal alteration experiments Chemical Geology 334 6276.CrossRefGoogle Scholar
Bourdelle, F. Truche, L. Pignatelli, I. Mösser-Ruck, R. Lorgeoux, C. Roszypal, C. and Michau, N., 2014 Iron—clay interactions under hydrothermal conditions: Impact of specific surface area of metallic iron on reaction pathway Chemical Geology 381 194205.CrossRefGoogle Scholar
Brégoin, S. (2003) Variabilité spatiale et temporelle des caractéristiques du Callovo-Oxfordien de Meuse/Haute-Marne. PhD thesis, ENSMP, Paris, 258 pp.Google Scholar
Brindley, G.W., 1982 Chemical compositions of berthierines — A review Clays and Clay Minerals 30 153155.CrossRefGoogle Scholar
Brunauer, S. Emmett, P.H. and Teller, E., 1938 Adsorption of gases in multimolecular layers Journal of the American Chemical Society 60 309319.CrossRefGoogle Scholar
Charpentier, D. Devineau, K. Mosser-Ruck, R. Cathelineau, M. and Villieras, F., 2006 Bentonite-iron interactions under alkaline condition: An experimental approach Applied Clay Science 32 113.CrossRefGoogle Scholar
de Combarieu, G. Barboux, P. and Minet, Y., 2007 Iron corrosion in Callovo-Oxfordian argillite: From experiments to thermodynamic/kinetic modelling Physics and Chemistry of the Earth 32 346358.CrossRefGoogle Scholar
de Combarieu, G. Schlegel, M.L. Neff, D. Foy, E. Vantelon, D. Barboux, P. and Gin, S., 2011 Glass-iron-clay interactions in a radioactive waste geological disposal: An integrated laboratory-scale experiment Applied Geochemistry 26 6579.CrossRefGoogle Scholar
Gaucher, E. Robelin, C. Matray, J.M. Negral, G. Gros, Y. Heitz, J.F. Vinsot, A. Rebours, H. Cassagnabere, A. and Bouchet, A., 2004 ANDRA underground research laboratory: interpretation of the mineralogical and geochemical data acquired in the Callovian-Oxfordian formation by investigative drilling Physics and Chemistry of the Earth 29 5577.CrossRefGoogle Scholar
Gregg, S.J. and Sing, K.S.W., 1982 Adsorption, Surface Area and Porosity London Academic Press 218228.Google Scholar
Guggenheim, S. and Bailey, S.W., 1989 An occurrence of a modulated serpentine related to the greenalite-caryopilite series American Mineralogist 74 637641.Google Scholar
Guillaume, D. (2002) Etude expérimentale du système fer — smectite en présence de solution à 80 et 300°C. PhD thesis, Univ. Henri Poincaré Nancy I, Nancy, France, 211 pp.Google Scholar
Guillaume, D. Neaman, A. Cathelineau, M. Mösser-Ruck, R. Peiffert, C. Abdelmoula, M. Dubessy, J. Villiéras, F. Baronnet, A. and Michau, N., 2003 Experimental synthesis of chlorite from smectite at 300°C in the presence of metallic Fe Clay Minerals 38 281302.CrossRefGoogle Scholar
Guillaume, D. Neaman, A. Cathelineau, M. Mosser-Ruck, R. Peiffert, C. Abdelmoula, M. Dubessy, J. Villieras, F. and Michau, N., 2004 Experimental study of the transformation of smectite at 80 and 300°C in the presence of Fe oxides Clay Minerals 39 1734.CrossRefGoogle Scholar
Habert, B. (2000) Réactivité du fer dans les gels et les smectites. PhD thesis, Univ. Paris 6, Paris, 227 pp.Google Scholar
Ishidera, T. Ueno, K. Kurosawa, S. and Suyama, T., 2008 Investigation of montmorillonite alteration and form of iron corrosion products in compacted bentonite in contact with carbon steel for ten years Physics and Chemistry of the Earth 33 269275.CrossRefGoogle Scholar
Jodin-Caumon, M.-C. Mösser-Ruck, R. Randi, A. Pierron, O. Cathelineau, M. and Michau, N., 2010 Mineralogical evolution of a claystone after reaction with iron under thermal gradient Clays and Clay Minerals 60 443455.CrossRefGoogle Scholar
Jodin-Caumon, M.-C. Mösser-Ruck, R. Rousset, D. Randi, A. Cathelineau, M. and Michau, N., 2012 Effect of a thermal gradient on iron-clay interactions Clays and Clay Minerals 58 667681.CrossRefGoogle Scholar
Kohler, E. (2001) Réactivité des mélanges synthétiques smectite/kaolinite et smectite/aluminium gel en présence d’un excès de fer métal. DUT Sciences et Génie des Matériaux, Univ. Evry Val d’Essonne, France.Google Scholar
Landais, P., 2006 Advances in geochemical research for the underground disposal of high-level, long-lived radioactive waste in clay formation Journal of Geochemical Exploration 88 3236.CrossRefGoogle Scholar
Lanson, B. Lantenois, S. van Aken, P.A. Bauer, A. and Plançon, A., 2012 Experimental investigation of smectite interaction with metal iron at 80°C: Structural characterization of newly formed Fe-rich phyllosilicates American Mineralogist 97 864871.CrossRefGoogle Scholar
Lantenois, S. (2003) Réactivité fer métal/smectites en milieu hydraté à 80°C. PhD thesis, Univ. Orléans, Orléans, France, 225 pp.Google Scholar
Lantenois, S. Lanson, B. Muller, F. Bauer, A. Jullien, M. and Plançon, A., 2005 Experimental study of smectite interaction with metal Fe at low temperature: 1. Smectite destabilization Clays and Clay Minerals 53 597612.CrossRefGoogle Scholar
Martin, F.A. Bataillon, C. and Schlegel, M.L., 2008 Corrosion of iron and low alloyed steel within a water saturated brick of clay under anaerobic deep geological disposal conditions: An integrated experiment Journal of Nuclear Materials 379 8090.CrossRefGoogle Scholar
Mosser-Ruck, R. Cathelineau, M. Guillaume, D. Charpentier, D. Rousset, D. Barres, O. and Michau, N., 2010 Effects of temperature, pH, and iron/clay and liquid/clay ratios on experimental conversion of dioctahedral smectite to berthierine, chlorite, vermiculite, or saponite Clays and Clay Minerals 58 280291.CrossRefGoogle Scholar
Osacký, M. Šucha, V. Czimerova, A. and Madejová, J., 2010 Reaction of smectites with iron in a nitrogen atmosphere at 75°C Applied Clay Science 50 237244.CrossRefGoogle Scholar
Perronnet, M. (2004) Réactivité des matériaux argileux dans un contexte de corrosion métal. Application au stockage des déchets radioactifs en site argileux. PhD thesis, INPL Nancy, France, 280 pp.Google Scholar
Perronnet, M. Villiéras, F. Jullien, M. Razafitianamaharavo, A. Raynal, J. and Bonnin, D., 2007 Towards a link between the energetic heterogeneities of the edge faces of smectites and their stability in the context of metallic corrosion Geochimica et Cosmochimica Acta 71 14631479.CrossRefGoogle Scholar
Perronnet, M. Jullien, M. Villieras, F. Raynal, J. Bonnin, D. and Bruno, G., 2008 Evidence of a critical content in Fe(0) on FoCa7 bentonite reactivity at 80°C Applied Clay Science 38 187202.CrossRefGoogle Scholar
Pierron, O. (2011) Interactions eau-fer-argilite: Rôle des paramètres Liquide/Roche, Fer/Argilite, Température sur la nature des phases minérales. PhD thesis, Univ. H. Poincaré, Nancy, France, 226 pp.Google Scholar
Pignatelli, I. Mugnaioli, E. Hybler, J. Mosser-Ruck, R. Cathelineau, M. and Michau, N., 2013 A multi-technique characterization of cronstedtite synthesized by iron—clay interaction in a step-by-step cooling procedure Clays and Clay Minerals 61 277289.CrossRefGoogle Scholar
Pignatelli, I. Mugnaioli, E. Mosser-Ruck, R. Barres, O. Kolb, U. and Michau, N., 2014 A multi-technique, micrometer- to atomic-scale description of a synthetic analogue of chukanovite, Fe2(CO3)(OH)2 European Journal of Mineralogy 26 221229.CrossRefGoogle Scholar
Poirier, J.E. (1984) Etudes des mécanismes accompagnant l’adsorption des tensio-actifs ioniques sur les solides, dans le cas des systèmes à interactions faibles: Application à la récupé ration par voie chimique du pé trole contenu dans les gisements gréseux. PhD thesis, INPL Nancy, France, 328 pp.Google Scholar
Rivard, C. (2011) Contribution à l’étude de la stabilité des minéraux constitutifs de l’argilite du Callovo-Oxfordien en présence de fer à 90°C. PhD thesis, INPL Nancy, France, 338 pp.Google Scholar
Rivard, C. Pelletier, M. Michau, N. Razafitianamaharavo, A. Bihannic, I. Abdelmoula, M. Ghanbaja, J. and Villiéras, F., 2013 Berthierine-like mineral formation and stability during the interaction of kaolinite with metallic iron at 90°C under anoxic and oxidant conditions American Mineralogist 98 163180.CrossRefGoogle Scholar
Rivard, C. Montargès-Pelletier, E. Vantelon, D. Pelletier, M. Karunakaran, C. Michot, L.J. Villiéras, F. and Michau, N., 2013 Combination of multi-scale and multi-edge X-ray spectroscopy for investigating the products obtained from the interaction between kaolinite and metallic iron in anoxic conditions at 90°C Physics and Chemistry of Minerals 40 115132.CrossRefGoogle Scholar
Rousset, D. (2002) Etude de la fraction argileuse de séquences sédimentaires de la Meuse et du Gard. Reconstitution de l’histoire diagénétique et des caracté ristiques physicochimiques des cibles. Aspects miné ralogiques, géochimiques et isotopiques. PhD thesis, Université Louis Pasteur, Strasbourg, France, 270 pp.Google Scholar
Savage, D. Watson, C. Benbow, S. and Wilson, J., 2010 Modelling iron-bentonite interactions Applied Clay Science 47 9198.CrossRefGoogle Scholar
Schlegel, M.L. Bataillon, C. Benhamida, K. Blanc, C. Menut, D. and Lacour, J.-L., 2008 Metal corrosion and argillite transformation at the water-saturated, high-temperature iron-clay interface: A microscopic-scale study Applied Geochemistry 23 26192633.CrossRefGoogle Scholar
Schlegel, M.L. Bataillon, C. Blanc, C. Prêt, D. and Eddy, F., 2010 Anodic activation of iron corrosion in clay media under water-saturated conditions at 90°C: Characterization of the corrosion interface Environmental Science & Technology 44 15031508.CrossRefGoogle Scholar
Sing, K.S.W. Everett, D.H. Haul, R.A.W. Moscou, L. Pierotti, R.A. Rouquerol, J. and Siemienewska, T., 1985 Reporting physisorption data for gas-solid systems Pure and Applied Chemistry 57 603619.CrossRefGoogle Scholar
Wilson, J. Cressey, G. Cressey, B. Cuadros, J. Ragnarsdottir, K.V. Savage, D. and Shibata, M., 2006 The effect of iron on montmorillonite stability. (II) Experimental investigation Geochimica et Cosmochimica Acta 70 323336.CrossRefGoogle Scholar
Yven, B. Sammartino, S. Géraud, Y. Homand, H. and Villieras, F., 2007 Mineralogy, texture and porosity of Callovo-Oxfordian argillites of the Meuse/Haute-Marne region (Eastern Paris Basin) Mémoires de la Société Géologique de France 178 7390.Google Scholar