Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T17:25:59.615Z Has data issue: false hasContentIssue false

Rapid and direct synthesis of spherical organotalc

Published online by Cambridge University Press:  01 January 2024

Maguy Jaber*
Affiliation:
Laboratoire de Matériaux à Porosité Controlée, UMR CNRS 7016, Ecole Nationale Supérieure de Chimie de Mulhouse, Université de Haute Alsace, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
Fabrice O. M. Gaslain
Affiliation:
Laboratoire de Matériaux à Porosité Controlée, UMR CNRS 7016, Ecole Nationale Supérieure de Chimie de Mulhouse, Université de Haute Alsace, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
Jocelyne Miehé-Brendlé
Affiliation:
Laboratoire de Matériaux à Porosité Controlée, UMR CNRS 7016, Ecole Nationale Supérieure de Chimie de Mulhouse, Université de Haute Alsace, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Organotalcs, in which organic moieties are covalently bonded to Si atoms belonging to the tetrahedral sheets, are usually prepared by a sol-gel process starting from ethanolic solution of Mg nitrate, organo-alcoxysilanes, and aqueous sodium hydroxide solution. In this case, gypsum-like particles are obtained. In this work, evaporation-induced self-assembly within aerosols was used for the first time in order to prepare organotalc spheres. These hybrid lamellar materials can be used as environmental barriers, as polymer fillers, and as catalytic supports. Using octyltriethoxysilane as a source of Si, spherical particles with sizes ranging from 20 nm to 1 µm are obtained. X-ray diffraction and transmission electron microscopy images show that the d001 value equals 2.8 nm meaning that, in this case, organic moities are either alternatively distributed or identically tilted in the interlayer space. Compared to the classical synthesis at room temperature or in autoclaves, and besides being a continuous process, the reaction time is reduced to several minutes instead of hours. Homogeneous forms are obtained by aerosol whereas irregular shapes are obtained in the classical synthesis.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2009

References

Alimi, F. and Gadri, A.L., 2004 Kinetics and morphology of formed gypsum Desalination 166 427434 10.1016/j.desal.2004.06.097.Google Scholar
Brindley, G.W. and Brown, G., 1961 Chlorite minerals The X-ray Identification and Crystal Structures of Clay Minerals London The Mineralogical Society 242296.Google Scholar
Da Fonseca, M.G. Silva, C.R. Barone, J.S. and Airoldi, C., 2000 Layered hybrid nickel phyllosilicates and the reactivity into the gallery space Journal of Materials Chemistry 10 789795 10.1039/a907804e.CrossRefGoogle Scholar
Imhof, A. and Pine, D. J., 1998 Preparation of Titania Foams Advanced Materials 10 697700 10.1002/(SICI)1521-4095(199806)10:9<697::AID-ADMA697>3.0.CO;2-M.3.0.CO;2-M>CrossRefGoogle Scholar
Jaber, M. Miehe-Brendlé, J. Roux, M. Dentzer, J. Le Dred, R. and Guth, J.-L., 2002 A new Mg-Al-organoclay New Journal of Chemistry 26 15971600 10.1039/B206516A.CrossRefGoogle Scholar
Jaber, M. Miéhé-Brendlé, J. Delmotte, L. and Le Dred, R., 2005 Formation of organoclays by a one step synthesis Solid State Science 7 610615 10.1016/j.solidstatesciences.2005.02.003.CrossRefGoogle Scholar
Kresge, C.T. Leonowics, M.E. Roth, W.J. Vartuli, J.C. and Beck, J.S., 1992 A new family of mesoporous molecular sieves prepared with liquid crystal templates Nature 359 710712 10.1038/359710a0.CrossRefGoogle Scholar
Lu, Y. Fan, H. Stump, A. Ward, T.L. Rieker, T. and Brinker, C.J., 1999 Self-assembly of mesostructured spherical nanoparticles Nature 398 223226 10.1038/18410.CrossRefGoogle Scholar
Mann, S., 2000 The chemistry of form Angewandte Chemie International Edition 39 33923406 10.1002/1521-3773(20001002)39:19<3392::AID-ANIE3392>3.0.CO;2-M.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Mann, S. and Ozin, G., 1996 Synthesis of inorganic materials with complex form Nature 382 313318 10.1038/382313a0.CrossRefGoogle Scholar
Ozin, G., 1992 Nanochemistry: synthesis in diminishing dimensions Advanced Materials 4 612649 10.1002/adma.19920041003.CrossRefGoogle Scholar
Patil, A.J. Muthusamy, E. and Mann, S., 2004 Synthesis and self-assembly of organoclay-wrapped biomolecules Angewandte Chemie International Edition 43 49284933 10.1002/anie.200453868.CrossRefGoogle ScholarPubMed
Rao, G.V.R. Lopez, G.P. Bravo, J. Pham, H. Datye, A.K. Xu, H. and Ward, T.L., 2002 Monodisperse mesoporous silica microspheres formed by evaporation-induced self assembly of surfactant templates in aerosols Advanced Materials 14 13011304 10.1002/1521-4095(20020318)14:6<443::AID-ADMA443>3.0.CO;2-S.Google Scholar
Sales, J.A.A. Petrucelli, G.C. Oliveira, F.J.V.E. and Airoldi, C., 2006 Some features associated with organosilane groups grafted by the sol-gel process onto synthetic talclike phyllosilicate Journal of Colloid and Interface Science 297 95103 10.1016/j.jcis.2005.10.019.CrossRefGoogle ScholarPubMed
Shin, Y. Liu, J. Wang, L.-Q. Nie, Z. Samuels, W. D. Fryxell, G.E. and Exarhos, G.J., 2000 Ordered hierarchical porous materials: towards tunable size-and-shape selective microcavities in nanoporous channels Angewandte Chemie International Edition 39 27022707 10.1002/1521-3773(20000804)39:15<2702::AID-ANIE2702>3.0.CO;2-F.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Templin, M. Wiesner, U. and Spiess, H.W., 1997 Organically modified aluminosilicate mesostructures from block copolymer phases Advanced Materials 10 814817 10.1002/adma.19970091011.CrossRefGoogle Scholar
Ukrainczyk, L. Bellman, R.A. and Anderson, A.B., 1997 Template synthesis and characterization of layered Al- and Mg-silsesquioxanes Journal of Physical Chemistry B 101 531539 10.1021/jp962937l.CrossRefGoogle Scholar
Yokoi, R. Yoshitake, H. and Tatsumi, T., 2004 Synthesis of mesoporous silica by using anionic surfactant Studies in Surface Science and Catalysis Part A–C 154 519527 10.1016/S0167-2991(04)80845-0.CrossRefGoogle Scholar