Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T15:59:48.316Z Has data issue: false hasContentIssue false

Preparation and Properties of Reduced-Charge Smectites — A Review

Published online by Cambridge University Press:  01 January 2024

Peter Komadel*
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-845 36 Bratislava, Slovakia
Jana Madejová
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-845 36 Bratislava, Slovakia
Juraj Bujdák
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-845 36 Bratislava, Slovakia
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Layer charge reduction of selected homoionic swelling clay minerals upon heating is reviewed. This phenomenon is known for Li+-montmorillonites as the Hofmann-Klemen effect. Aspects covered in the review include: mechanism of the charge reduction caused by the irreversible migration of small cations into the mineral layers; final sites of the fixed cations in the octahedral and/or tetrahedral sheets, as deduced on the basis of structural and spectroscopic data obtained in several studies; effects of octahedral and tetrahedral components of the layer charge; properties of the exchangeable cations; and the chemistry and structure of the mineral on charge reduction. Current knowledge has been summarized on the changes of various mineral properties connected with charge reduction, including the loss of swelling and the decrease in the cation exchange capacity, the most important change upon cation fixation. Also discussed are the preparation, properties, and advantages of uses of series of reduced-charge montmorillonites (RCMs) in research; interactions of RCMs with alkylammonium cations and organic cationic dyes, with some examples on the interactions with organic polymers and other organic compounds. Properties of organo-complexes and composite materials prepared from RCMs are also included in this review.

Type
Review Article
Copyright
Copyright © The Clay Minerals Society 2005

References

Alba, M.D. Alvero, R. Becerro, A.I. Castro, M.A. and Trillo, J.M., (1998) Chemical behavior of lithium ions in reexpanded Li-montmorillonites Journal of Physical Chemistry B 102 22072213 10.1021/jp9715641.CrossRefGoogle Scholar
Alvero, R. Alba, M.D. Castro, M.A. and Trillo, J.M., (1994) Reversible migration of lithium in montmorillonite Journal of Physical Chemistry 98 78487853.CrossRefGoogle Scholar
Annabi-Bergaya, F. Cruz, M.I. Gatineau, L. and Fripiat, J.J., (1979) Adsorption of alcohols by smectites. I. Distinction between internal and external surfaces Clay Minerals 14 249–225.CrossRefGoogle Scholar
Bahranowski, K. Gawel, A. Kielski, A. Michalik, A. Serwicka, E.M. Wisla-Walsh, E. Wodnicka, K. and Zwicky, C., (2002) Reduced charge Al-pillared montmorillonites: On the possibility of controlling the pillar density Geologica Carpathica 53 99102.Google Scholar
Beaufort, D. Berger, G. Lacharpagne, J.C. and Meunier, A., (2001) An experimental alteration of montmorillonite to a di + trioctahedral smectite assemblage at 100 and 200°C Clay Minerals 36 211225.CrossRefGoogle Scholar
Bidadi, H. Schroeder, P.A. and Pinnavaia, T.J., (1988) Dielectric properties of montmorillonite clay films: Effects of water and layer charge reduction Journal of Physics and Chemistry of Solids 49 14351440.CrossRefGoogle Scholar
Brindley, G.W. and Ertem, G., (1971) Preparation and solvation properties of some variable charge montmorillonites Clays and Clay Minerals 19 399404.CrossRefGoogle Scholar
Bujdák, J. and Iyi, N., (2002) Visible spectroscopy of cationic dyes in dispersions with reduced-charge montmorillonites Clays and Clay Minerals 50 446454.CrossRefGoogle Scholar
Bujdák, J. and Komadel, P., (1997) Interaction of methylene blue with reduced charge montmorillonite Journal of Physical Chemistry B 101 90659068.CrossRefGoogle Scholar
Bujdák, J. Slosiariková, H. Nováková, L. and Číčel, B., (1991) Fixation of lithium cations in montmorillonite Chemical Papers 45 499507.Google Scholar
Bujdák, J. Petrovičová, I. and Slosiariková, H., (1992) Study of water—reduced charge montmorillonite system Geologica Carpathica, Series Clays 43 109111.Google Scholar
Bujdák, J. Slosiariková, H. and Číčel, B., (1992) Interaction of long chain alkylammonium cations with reduced charge montmorillonite Journal of Inclusion Phenomena and Molecular Recognition 13 321327.CrossRefGoogle Scholar
Bujdák, J. Slosiariková, H. and Číčel, B., (1993) Sorption of hexadecylammonium ions on reduced charge montmorillonites Chemical Papers 47 8587.Google Scholar
Bujdák, J. Hackett, E. and Giannelis, E.P., (2000) Effect of layer charge on the intercalation of poly(ethylene oxide) in layered silicates: Implication on nanocomposite polymer electrolytes Chemistry of Materials 12 21682174.CrossRefGoogle Scholar
Bujdák, J. Janek, M. Madejová, J. and Komadel, P., (2001) Methylene blue interactions with reduced charge smectites Clays and Clay Minerals 49 244254.CrossRefGoogle Scholar
Bujdák, J. Iyi, N. and Fujita, T., (2002) The aggregation of methylene blue in montmorillonite dispersions Clay Minerals 37 121133.CrossRefGoogle Scholar
Bujdák, J. Iyi, N. Hrobáriková, J. and Fujita, T., (2002) Aggregation and decomposition of a pseudoisocyanine dye in dispersions of layered silicates Journal of Colloid and Interface Science 247 494503.CrossRefGoogle ScholarPubMed
Bujdák, J. Iyi, N. and Fujita, T., (2002) Aggregation and stability of 1,1’-diethyl-4,4’-cyanine dye on the surface of layered silicates with different charge densities Colloids and Surfaces A: Physicochemical and Engineering Aspects 207 207214.CrossRefGoogle Scholar
Bujdák, J. Iyi, N. and Fujita, T., (2003) Control of optical properties of adsorbed cyanine dyes via negative charge distribution on layered silicates Solid State Phenomena 90 463468.CrossRefGoogle Scholar
Bujdák, J. Iyi, N. Kaneko, Y. Czímerová, A. and Sasai, R., (2003) Molecular arrangement of rhodamine 6G cations in the films of layered silicates: The effect of the layer charge Physical Chemistry Chemical Physics 5 46804685.CrossRefGoogle Scholar
Calvet, R. and Prost, R., (1971) Cation migration into empty octahedral sites and surface properties of clays Clays and Clay Minerals 19 175186.CrossRefGoogle Scholar
Chorom, M. and Rengasamy, P., (1996) Effect of heating on swelling and dispersion of different cationic forms of a smectite Clays and Clay Minerals 44 783790.CrossRefGoogle Scholar
Číčel, B. Komadel, P., Amonette, J.E. and Zelazny, L.W., (1994) Structural formulae of layer silicates Quantitative Methods in Soil Mineralogy Madison, Wisconsin Soil Science Society of America 114136.Google Scholar
Clementz, D.M. and Mortland, M.M., (1974) Properties of reduced charge montmorillonite: Tetra-alkylammonium ion exchange forms Clays and Clay Minerals 22 223229.CrossRefGoogle Scholar
Clementz, D.M. Mortland, M.M. and Pinnavaia, T.J., (1974) Properties of reduced charge montmorillonites: Hydrated Cu (II) ions as a spectroscopic prohe Clays and Clay Minerals 22 4957.CrossRefGoogle Scholar
Coleman, N.T. and Craig, D., (1961) The spontaneous alteration of hydrogen clay Soil Science 91 1418.CrossRefGoogle Scholar
Cuadros, J., (2002) Structural insights from the study of Cs-exchanged smectites submitted to wetting-and-drying cycles Clay Minerals 37 473486.CrossRefGoogle Scholar
Czímerová, A. Bujdák, J. and Gáplovský, A., (2003) Reduction of the negative charge of layered silicates prohed hy cationic azine dyes Solid State Phenomena 90 469474.CrossRefGoogle Scholar
Delozier, D.M. Orwoll, R.A. Cahoon, J.F. Ladislaw, J.S. Smith, J.G. and Connell, J.W., (2003) Polyimide nanocomposites prepared from high-temperature, reduced charge organoclays Polymer 44 22312241.CrossRefGoogle Scholar
Dutta, N.C. Iwasaki, T. Ehina, T. and Hayashi, H., (1999) A combined X-ray photoelectron and Auger electron spectroscopic study of cesium in variable-charge montmorillonites Journal of Colloid and Interface Science 216 161166.CrossRefGoogle ScholarPubMed
Emmerich, K. Madsen, F.T. and Kahr, G., (1999) Dehydroxylation behavior of heat-treated and steam-treated homoionic cis-vacant octahedra Clays and Clay Minerals 47 591604.CrossRefGoogle Scholar
Emmerich, K. Plötze, M. and Kahr, G., (2001) Reversible collapse and Mg2+ release of de- and rehydroxylated homoionic cis-vacant montmorillonites Applied Clay Science 19 143151.CrossRefGoogle Scholar
Farmer, V.C. and Russell, J.D., (1967) Infrared absorption spectrometry in clay studies Clays and Clay Minerals 15 121142.CrossRefGoogle Scholar
Feng, Q. Honhu, C. Yanagisawa, K. Yamasaki, N. and Komameni, S., (2000) Synthesis of LiAl2(OH)6+ intercalated montmorillonite hy a hydrothermal soft chemical reaction Journal of Materials Chemistry 10 483488.CrossRefGoogle Scholar
Gates, W.P. Komadel, P. Madejová, J. Bujdák, J. Stucki, J.W. and Kirkpatrick, R.J., (2000) Electronic and structural properties of reduced-charge montmorillonites Applied Clay Science 16 257271.CrossRefGoogle Scholar
Greathouse, J. and Sposito, G., (1998) Monte Carlo and molecular dynamics studies of interlayer structure in Li(H2O)(3)-smectites Journal of Physical Chemistry B 102 24062414.CrossRefGoogle Scholar
Greene-Kelly, R., (1953) The identification of montmorillonoids in clays Journal of Soil Science 4 233237.CrossRefGoogle Scholar
Greene-Kelly, R., (1955) Dehydration of montmorillonite minerals Mineralogical Magazine 30 604615.CrossRefGoogle Scholar
Hahner, G. Marti, A. Spencer, N.D. and Caseri, W.R., (1996) Orientation and electronic structure of methylene blue on mica: A near edge X-ray absorption structure spectroscopic study Journal of Chemical Physics 104 77497757.CrossRefGoogle Scholar
He, H.P. Guo, J.G. Xie, X.D. and Peng, J.L., (2001) Location and migration of cations in Cu2+-adsorbed montmorillonite Environment International 26 347352.CrossRefGoogle ScholarPubMed
Heller-Kallai, L., (2001) Protonation-deprotonation of dioctahedral smectites Applied Clay Science 20 2738.CrossRefGoogle Scholar
Heller-Kallai, L. and Mosser, C., (1995) Migration of Cu ions in Cu montmorillonite heated with and without alkali halides Clays and Clay Minerals 43 738743.CrossRefGoogle Scholar
Hofmann, U. and Klemen, R., (1950) Verlust der Austauschfähigkeit von Lithiumionen an Bentonit durch Erhitzung Zeitschrift für anorganische und allgemeine Chemie 262 9599.CrossRefGoogle Scholar
Hrobáriková, J. and Komadel, P., (2002) Sorption properties of reduced charge montmorillonite Geologica Carpathica 53 9398.Google Scholar
Hrobáriková, J. Madejová, J. and Komadel, P., (2001) Effect of heating temperature on Li fixation, layer charge and properties of fine fractions of bentonites Journal of Materials Chemistry 11 14521457.CrossRefGoogle Scholar
Iwasaki, T. Onodera, Y., Churchman, G.J. Fitzpatrick, J.W. and Eggleton, R.A., (1995) Sorption behaviour of caesium ions in smectites Clays: Controlling the Environment 6773.Google Scholar
Janek, M. and Komadel, P., (1993) Autotransformation of H- smectites in aqueous solutions. Effect of octahedral iron content Geologica Carpathica, Series Clays 44 5964.Google Scholar
Janek, M. and Komadel, P., (1999) Acidity of proton saturated and autotransformed smectites characterised with proton affinity distribution Geologica Carpathica 50 373378.Google Scholar
Janek, M. Komadel, P. and Lagaly, G., (1997) Effect of autotransformation on the layer charge of smectites determined hy the alkylammonium method Clay Minerals 32 623632.CrossRefGoogle Scholar
Jaynes, W.F. and Bigham, J.M., (1987) Charge reduction, octahedral charge, and lithium retention in heated, Li-saturated smectites Clays and Clay Minerals 35 440448.CrossRefGoogle Scholar
Jaynes, W.F. Traina, S.J. Bigham, J.M. and Johnston, C.T., (1992) Preparation and characterization of reduced-charge hectorites Clays and Clay Minerals 40 397404.CrossRefGoogle Scholar
Kaneko, Y. Iyi, N. Bujdák, J. Sasai, R. and Fujita, T., (2003) Molecular orientation of methylene blue intercalated in layer-charge-controlled montmorillonites Journal of Materials Research 18 26392643.CrossRefGoogle Scholar
Kaneko, Y. Iyi, N. Bujdák, J. Sasai, R. and Fujita, T., (2004) Effect of layer charge density on orientation and aggregation of a cationic laser dye incorporated in the interlayer space of montmorillonites Journal of Colloid and Interface Science 269 2225.CrossRefGoogle ScholarPubMed
Karakassides, M.A. Gournis, D. and Petridis, D., (1997) Infrared reflectance study of thermally treated Li- and Cs-montmorillonites Clays and Clay Minerals 45 649658.CrossRefGoogle Scholar
Karakassides, M.A. Gournis, D. and Petridis, D., (1999) An infrared reflectance study of Si-0 vibrations in thermally treated alkali-saturated montmorillonites Clay Minerals 34 429438.CrossRefGoogle Scholar
Karakassides, M.A. Madejová, J. Arvaiová, B. Bourlinos, A. Petridis, D. and Komadel, P., (1999) Location of Li(I), Cu(II), and Cd(II) in heated montmorillonite: Evidence from specular reflectance infrared and electron spin resonance spectroscopies Journal of Materials Chemistry 9 15531558.CrossRefGoogle Scholar
Kitajima, K. Taruta, S. and Takusagawa, N., (1991) Effect of layer charge on the IR spectra of synthetic fluorine micas Clay Minerals 26 435440.CrossRefGoogle Scholar
Kohayashi, T., (1996) J-aggregates Singapore World Scientific Pub Co..CrossRefGoogle Scholar
Komadel, P., (2003) Chemically modified smectites Clay Minerals 38 127138.CrossRefGoogle Scholar
Komadel, P. Bujdák, J. Madejová, J. Šucha, V. and Elsass, F., (1996) Effect of non-swelling layers on the dissolution of reduced-charge montmorillonite in hydrochloric acid Clay Minerals 31 333345.CrossRefGoogle Scholar
Komadel, P. Madejová, J. and Stucki, J.W., (1999) Partial stabilization of Fe(II) in reduced ferruginous smectite hy Li fixation Clays and Clay Minerals 47 458465.CrossRefGoogle Scholar
Komadel, P. Hrobáriková, J. Smrčok, L. and Koppelhuber-Bitschnau, B., (2002) Hydration of reduced-charge montmorillonite Clay Minerals 37 543550.CrossRefGoogle Scholar
Komadel, P. Madejová, J. Hrobáriková, J. Janek, M. and Bujdák, J., (2003) Fixation of Li+ cations in montmorillonite upon heating Solid State Phenomena 90 497502.CrossRefGoogle Scholar
Köster, H.M. Ehrlicher, U. Gilg, H.A. Jordan, R. Murad, E. and Onnich, K., (1999) Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites Clay Minerals 34 579599.CrossRefGoogle Scholar
Lagaly, G. and Mermut, A.R., (1994) Layer charge determination by alkylammonium ions Layer Charge Characteristics of 2:1 Silicate Clay Minerals Boulder, Colorado The Clay Minerals Society 246.Google Scholar
Laird, D.A., (1999) Layer charge influences on the hydration of expandable 2:1 phyllosilicates Clays and Clay Minerals 47 630636.CrossRefGoogle Scholar
Laird, D.A. Scott, A.D. and Fenton, T.E., (1989) Evaluation of the alkylammonium method of determining layer charge Clays and Clay Minerals 37 4146.CrossRefGoogle Scholar
Lim, C.F.L. and Jackson, M.L., (1986) Expandable phyllosilicate reactions with lithium on heating Clays and Clay Minerals 34 346352.CrossRefGoogle Scholar
Luca, V. and Cardile, C.M., (1988) Thermally induced cation migration in Na and Li montmorillonite Physics and Chemistry of Minerals 16 98103.CrossRefGoogle Scholar
Luca, V. Cardile, C.M. and Meinhold, R.H., (1989) Highresolution multinuclear NMR study of cation migration in montmorillonite Clay Minerals 24 115119.CrossRefGoogle Scholar
Madejová, J. Bujdák, J. Gates, W.P. and Komadel, P., (1996) Preparation and infrared spectroscopic characterization of reduced-charge montmorillonite with various Li contents Clay Minerals 31 233241.CrossRefGoogle Scholar
Madejová, J. Arvaiová, B. and Komadel, P., (1999) FTIR spectroscopic characterisation of thermally treated Cu2+, Cd2+, and Li+ montmorillonites Spectrochimica Acta A 55 24672476.CrossRefGoogle Scholar
Madejová, J. Bujdák, J. Petit, S. and Komadel, P., (2000) Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated dioctahedral smectites. (I) Mid-infrared region Clay Minerals 35 739751.CrossRefGoogle Scholar
Madejová, J. Bujdák, J. Petit, S. and Komadel, P., (2000) Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated dioctahedral smectites. (II) Near-infrared region Clay Minerals 35 753761.CrossRefGoogle Scholar
Manceau, A. Drits, V.A. Lanson, B. Chateigner, D. Wu, J. Huo, D. Gates, W.P. and Stucki, J.W., (2000) Oxidationreduction mechanism of iron in dioctahedral smectites: 2. Crystal chemistry of reduced Garfield nontronite American Mineralogist 85 153172.CrossRefGoogle Scholar
Maes, A. Stul, M.S. and Cremers, A., (1979) Layer chargecation exchange capacity relationships in montmorillonite Clays and Clay Minerals 27 387392.CrossRefGoogle Scholar
Malla, P.B. and Douglas, L.A., (1987) Problems in identification of montmorillonite with variable Li contents Clays and Clay Minerals 35 232236.CrossRefGoogle Scholar
McBride, M.B. and Mortland, M.M., (1974) Copper (II) interactions with montmorillonite: Evidence from physical methods Soil Science Society of America Proceedings 38 408414.CrossRefGoogle Scholar
Meier, L.P. and Nuesch, R., (1999) The lower cation exchange capacity limit of montmorillonite Journal of Colloid and Interface Science 217 7785.CrossRefGoogle ScholarPubMed
Mermut, A.R., (1994) Layer Charge Characteristics of 2:1 Silicate Clay Minerals Boulder, Colorado The Clay Minerals Society.Google Scholar
Mermut, A.R. and Mermut, A.R., (1994) Problems associated with layer charge characterization of 2:1 phyllosilicates Layer Charge Characteristics of 2:1 Silicate Clay Minerals Boulder, Colorado, USA The Clay Minerals Society 106122.Google Scholar
Miklos, D. and Číčel, B., (1993) Development of interstratification in K- and NH4-smectite from Jelsovy Potok (Slovakia) treated by wetting and drying Clay Minerals 28 435443.CrossRefGoogle Scholar
Mosser, C. Michot, L.J. Villieras, F. and Romeo, M., (1997) Migration of cations in copper(II)-exchanged montmorillonite and laponite upon heating Clays and Clay Minerals 45 789802.CrossRefGoogle Scholar
Norrish, K., (1954) The swelling of montmorillonites Discussions of the Faraday Society 18 120134.CrossRefGoogle Scholar
Olis, A.C. Malla, P.B. and Douglas, L.A., (1990) The rapid estimation of the layer charges of 2–1 expanding clays from a single alkylammonium ion expansion Clay Minerals 25 3950.CrossRefGoogle Scholar
Ormerod, E.C. and Newman, A.C.D., (1983) Water sorption on Ca-saturated clays: II. Internal and external surfaces of montmorillonite Clay Minerals 18 289299.CrossRefGoogle Scholar
Pálková, H. Madejová, J. and Righi, D., (2003) Acid dissolution of reduced-charge Li- and Ni-montmorillonites Clays and Clay Minerals 51 133142.CrossRefGoogle Scholar
Park, S.H. and Sposito, G., (2000) Monte Carlo simulation of total radial distribution functions for interlayer water in Li-, Na-, and K-montmorillonite hydrates Journal of Physical Chemistry B 104 46424648.CrossRefGoogle Scholar
Pennell, K.D. Rhue, R.D. and Harris, W.G., (1991) The effect of heat treatments on the total charge and exchangeable cations of Ca-, Na-, and Li-saturated kaolinite Clays and Clay Minerals 39 306315.CrossRefGoogle Scholar
Petit, S. Righi, D. Madejová, J. and Decarreau, A., (1998) Layer charge estimation of smectites using infrared spectroscopy Clay Minerals 33 579591.CrossRefGoogle Scholar
Petit, S. Caillaud, J. Righi, D. Madejová, J. Elsass, F. and Köster, H.M., (2002) Characterization and crystal chemistry of an Fe-rich montmorillonite Clay Minerals 37 283297.CrossRefGoogle Scholar
Purnell, J.H. and Lu, Y., (1993) Ionic migration and charge reduction in Ni2+, Co2+ and Zn2+-exchanged Texas montmorillonite Catalysis Letters 18 235241.CrossRefGoogle Scholar
Purnell, J.H. Williams, J. and Lu, Y., (1991) Charge reduction and regeneration in K+, Na+, Mg2+, Ni2+ and Co2+-exchanged Wyoming bentonite Catalysis Letters 10 6370.CrossRefGoogle Scholar
Russell, J.D. and Farmer, V.C., (1964) Infrared spectroscopic study of the dehydration of montmorillonite and saponite Clay Minerals Bulletin 5 443464.CrossRefGoogle Scholar
Russell, J.D. and Fraser, A.R., (1971) IR spectroscopic evidence for interaction between hydronium ions and lattice OH groups in montmorillonite Clays and Clay Minerals 19 5559.CrossRefGoogle Scholar
Sanchez-Soto, P. Sohrados, I. Sanz, J. and Perez-Rodriguez, J.L., (1993) 29-Si and 27-Al MAS NMR study of the thermal transformations of pyrophyllite Journal of the American Ceramic Society 76 30243028.CrossRefGoogle Scholar
Sato, T. Watanahe, T. and Otsuka, R., (1992) Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites Clays and Clay Minerals 40 103113.CrossRefGoogle Scholar
Schultz, L.G., (1969) Lithium and potassium absorption, dehydroxylation temperature and structural water content in aluminous smectites Clays and Clay Minerals 17 115149.CrossRefGoogle Scholar
Sheng, G.Y. Johnston, C.T. Teppen, B.J. and Boyd, S.A., (2002) Adsorption of dinitrophenol herbicides from water by montmorillonites Clays and Clay Minerals 50 2534.CrossRefGoogle Scholar
Slade, P.G. and Gates, W.P., (2004) The swelling of HDTMA smectites as influenced by their preparation and layer charges Applied Clay Science 25 93101.CrossRefGoogle Scholar
Sposito, G. Prost, R. and Gaultier, J.P., (1983) Infrared spectroscopic study of adsorbed water on reduced-charge montmorillonites Clays and Clay Minerals 31 916.CrossRefGoogle Scholar
Srasra, E. Bergaya, F. and Fripiat, J.J., (1994) Infrared spectroscopy study of tetrahedral and octahedral substitutions in an interstratified illite-smectite clay Clays and Clay Minerals 42 237241.CrossRefGoogle Scholar
Stackhouse, S. and Coveney, P.V., (2002) Study of thermally treated lithium montmorillonite by Ab Initio methods Journal of Physical Chemistry B 106 1247012477.CrossRefGoogle Scholar
Stevens, J.J. and Anderson, S.J., (1996) Orientation of trimethylphenylammonium (TMPA) on Wyoming montmorillonite: Implications for sorption of aromatic compounds Clays and Clay Minerals 44 132141.CrossRefGoogle Scholar
Stevens, J.J. and Anderson, S.J., (1996) An FTIR study of water sorption on TMA- and TMPA-montmorillonites Clays and Clay Minerals 44 142150.CrossRefGoogle Scholar
Stevens, J.J. Anderson, S.J. and Boyd, S.A., (1996) FTIR study of competitive water-arene sorption on tetramethylammonium- and trimethylphenylammonium montmorillonites Clays and Clay Minerals 44 8895.CrossRefGoogle Scholar
Stucki, J.W. Lee, K. Zhang, L. and Larson, R.A., (2002) Effects of iron oxidation state on the surface and structural properties of smectites Pure and Applied Chemistry 74 21452158.CrossRefGoogle Scholar
Šucha, V. and Širáňnová, V., (1991) Ammonium and potassium fixation in smectites by wetting and drying Clays and Clay Minerals 39 556559.CrossRefGoogle Scholar
Tamura, K. Yamada, H. and Nakazawa, H., (2000) Stepwise hydration of high-quality synthetic smectites with various cations Clays and Clay Minerals 48 400404.CrossRefGoogle Scholar
Tettenhorst, R., (1962) Cation migration in montmorillonites American Mineralogist 47 769773.Google Scholar
Theng, B.K.G. Hayashi, S. Soma, M. and Seyama, H., (1997) Nuclear magnetic resonance and X-ray photoelectron spectroscopic investigation of lithium migration in montmorillonite Clays and Clay Minerals 45 718723.CrossRefGoogle Scholar
Thomas, F. Michot, L.J. Vantelon, D. Montargès, E. Prélot, B. Cruchaudet, M. and Delon, J.F., (1999) Layer charge and electrophoretic mobility of smectites Colloids and Surfaces A: Physicochemical and Engineering Aspects 159 351358.CrossRefGoogle Scholar
Varadachari, C. Mondal, A.H. and Ghosh, K., (1991) Some aspects of clay-humus complexation — effect of exchangeable cations and lattice charge Soil Science 151 220227.CrossRefGoogle Scholar
Villemure, G. and Bard, A.J., (1990) Clay modified electrodes: Part 9. Electrochemical studies of the electroactive fraction of adsorbed species in reduced-charge and preadsorbed clay films Journal of Electroanalytical Chemistry 282 107121.CrossRefGoogle Scholar
Williams, J. Purnell, J.H. and Ballantine, J.A., (1991) The mechanism of layer charge reduction and regeneration in Li+-exchanged montmorillonite Catalysis Letters 9 115120.CrossRefGoogle Scholar
Yariv, S. and Heller-Kallai, L., (1973) I.R. evidence for migration of protons in H- and organo-montmorillonites Clays and Clay Minerals 21 199200.CrossRefGoogle Scholar