Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-19T01:14:03.709Z Has data issue: false hasContentIssue false

Preparation and Characterization of Eu-Magadiite Intercalation Compounds

Published online by Cambridge University Press:  01 January 2024

Naoko Mizukami
Affiliation:
Department of Applied Chemistry, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
Masashi Tsujimura
Affiliation:
Department of Applied Chemistry, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
Kazuyuki Kuroda
Affiliation:
Department of Applied Chemistry, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, Nishiwaseda 2-8-26, Shinjuku-ku, Tokyo 169-0051, Japan
Makoto Ogawa*
Affiliation:
PRESTO, Japan Science and Technology Corporation (JST) Department of Earth Sciences, Waseda University, Nishiwaseda 1-6-1, Shinjuku-ku, Tokyo 169-8050, Japan
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The intercalation of europium ions (Eu3+) into the interlayer space of a layered silicate, magadiite, was conducted by ion-exchange reactions between magadiite and europium(III) chloride. X-ray diffraction and elemental analysis results indicated that Eu3+ cations were intercalated into the interlayer space of magadiite. The ion exchange between Eu3+ and Na+ occurred preferentially so that the adsorbed Eu3+ amounts were controlled quantitatively. Thermal transformation of the original layered structure was suppressed by the intercalation of Eu3+. The resulting intercalation compounds exhibited photoluminescence arising from the intercalated Eu3+. The luminescence intensity varied in accordance with the amount of Eu3+ absorbed, suggesting that the self-quenching occurred at higher loading levels. The luminescence intensity was also changed by the heat treatment, corresponding to the change in the surroundings of the Eu3+ adsorbed, induced by the removal of the adsorbed water molecules and the hydroxyl groups of the silicate.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

References

Arakawa, T., Tagata, T., Adachi, G. and Shiokawa, J. (1979) Photoluminescence during the catalysis of water decomposition on an activated europium(III)-Y zeolite. Journal of the Chemical Society, Chemical Communications, 453454.CrossRefGoogle Scholar
Bartlett, J.R. Cooney, R.P. and Kydo, R.A., (1988) Europium-exchanged synthetic faujasite zeolites: A luminescence spectroscopic study Journal of Catalysis 114 5870 10.1016/0021-9517(88)90009-7.CrossRefGoogle Scholar
Bergaya, F. and Van Damme, H., (1983) Luminescence of Eu3+ and Tb3+ ions adsorbed on hydrated layer-lattice silicate surfaces Journal of the Chemical Society, Faraday Transactions 2 79 505518 10.1039/f29837900505.CrossRefGoogle Scholar
Bredol, M. Kynast, U. and Ronda, C., (1991) Designing luminescent materials Advanced Materials 3 361367 10.1002/adma.19910030707.CrossRefGoogle Scholar
Constantino, V.R.L. Bizeto, M.A. and Brito, H.F., (1998) Photoluminescence study of layered niobates intercalated with Eu3+ ions Journal of Alloys and Compounds 278 142148 10.1016/S0925-8388(98)00588-X.CrossRefGoogle Scholar
Dailey, J.S. and Pinnavaia, T.J., (1992) Silica pillared derivatives of H+-magadiite, a crystalline hydrated silica Chemistry of Materials 4 855863 10.1021/cm00022a022.CrossRefGoogle Scholar
Eugster, H.P., (1967) Hydrous sodium silicates from Lake Magadii, Kenya: Precursors of bedded chert Science 157 11771180 10.1126/science.157.3793.1177.CrossRefGoogle Scholar
Honma, T. Toda, K. Ye, Z.-G. and Sato, M., (1998) Concentration quenching of the Eu3+-activated luminescence in some layered perovskites with two-dimensional arrangement Journal of Physics and Chemistry of Solids 59 11871193 10.1016/S0022-3697(98)00056-0.CrossRefGoogle Scholar
Isoda, K. Kuroda, K. and Ogawa, M., (2000) Grafting of γ-methacryloxypropylsilyl groups in the interlayer space of layered polysilicate magadiite and the copolymerized products with methylmethacrylate Chemistry of Materials 12 17021707 10.1021/cm0000494.CrossRefGoogle Scholar
Kim, C.S. Yates, D.M. and Heaney, P.J., (1997) The layered sodium silicate magadiite: An analog to smectite for benzene sorption from water Clays and Clay Minerals 45 881885 10.1346/CCMN.1997.0450612.CrossRefGoogle Scholar
Kudo, A. and Sakata, T., (1995) Luminescent properties of nondoped and rare earth metal ions-doped K2La2Ti3O10 with layered perovskite structures: importance of the hole trap process Journal of Physical Chemistry 99 1596315967 10.1021/j100043a040.CrossRefGoogle Scholar
Kudo, A., (1997) Luminescent properties of nondoped and rare earth metal ions-doped KLaNb2O7 with layered perovskite structures Chemistry of Materials 9 664669 10.1021/cm9602149.CrossRefGoogle Scholar
Lagaly, G., (1979) Crystalline silicic acids and their interface reactions Advances in Colloid and Interface Science 11 105148 10.1016/0001-8686(79)85001-0.CrossRefGoogle Scholar
Lagaly, G. Beneke, K. and Weiss, A., (1975) Magadiite and H-magadiite: i. Sodium magadiite and some of its derivatives American Mineralogist 60 642 649.Google Scholar
Lagaly, G. Beneke, K. and Weiss, A., (1975) Magadiite and H-magadiite: ii. H magadiite and its intercalation compounds American Mineralogist 60 650 658.Google Scholar
Landis, M.E. Aufdembrink, B.A. Chu, P. Johnson, I.D. Kirker, G.W. and Rubin, M.K., (1991) Preparation of molecular sieves from dense, layered metal oxides Journal of the American Chemical Society 113 31893190 10.1021/ja00008a067.CrossRefGoogle Scholar
Miller, S.E. Heath, G.R. and Gonzalez, R.D., (1982) Effects of temperature on the sorption of lanthanides by montmorillonite Clays and Clay Minerals 30 111 10.1346/CCMN.1982.0300205.CrossRefGoogle Scholar
Muraishi, H., (1999) Effects of the exchangeable alkali metal ions on the thermal behavior of magadiite and kenyaite Nendo Kagaku 38 188 196.Google Scholar
Nogami, M. and Abe, Y., (1997) High temperature persistent spectral hole burning of Eu3+-doped SiO2 glass prepared by the sol-gel process Applied Physics Letters 71 34653467 10.1063/1.120361.CrossRefGoogle Scholar
Ogawa, M. and Kuroda, K., (1995) Photofunctions of intercalation compounds Chemical Reviews 95 399438 10.1021/cr00034a005.CrossRefGoogle Scholar
Ogawa, M. and Maeda, N., (1998) Intercalation of tris(bipyridine)ruthenium(II) into magadiite Clay Minerals 33 643650 10.1180/claymin.1998.033.4.11.CrossRefGoogle Scholar
Ogawa, M. and Takizawa, Y., (1999) Intercalation of tris(2,2′-bipyridine)ruthenium(II) into a layered silicate, magadiite, with the aid of a crown ether Journal of Physical Chemistry, B 103 50055009 10.1021/jp984198+.CrossRefGoogle Scholar
Ogawa, M. Okutomo, S. and Kuroda, K., (1998) Control of interlayer microstructures of a layered silicate by surface modification with organochlorosilanes Journal of the American Chemical Society 120 73617362 10.1021/ja981055s.CrossRefGoogle Scholar
Ogawa, M. Miyoshi, M. and Kuroda, K., (1998) Perfluoroalkylsilylation of a layered silicate, magadiite Chemistry of Materials 10 37873791 10.1021/cm980660r.CrossRefGoogle Scholar
Ogawa, M. Ishii, T. Miyamoto, N. and Kuroda, K., (2001) Photocontrol of the basal spacing of azobenzene-magadiite intercalation compound Advanced Materials 13 11071109 10.1002/1521-4095(200107)13:14<1107::AID-ADMA1107>3.0.CO;2-O.3.0.CO;2-O>CrossRefGoogle Scholar
Ogawa, M. Yamamoto, M. and Kuroda, K., (2001) Intercalation of an amphiphilic azobenzene derivative into the interlayer space of a layered silicate, magadiite Clay Minerals 36 263267 10.1180/000985501750177988.CrossRefGoogle Scholar
Okutomo, S. Kuroda, K. and Ogawa, M., (1999) Preparation of dimethylalkylsilylated-magadiites Applied Clay Science 15 253264 10.1016/S0169-1317(99)00010-1.CrossRefGoogle Scholar
Rojo, J.M. Ruiz-Hitzky, E. and Sanz, J., (1988) Proton-sodium exchange in magadiite. Spectroscopic study (NMR, IR) of the evolution of interlayer OH groups Inorganic Chemistry 27 27852790 10.1021/ic00289a009.CrossRefGoogle Scholar
Ruiz-Hitzky, E. and Rojo, M., (1980) Intracrystalline grafting on layer silicic acid Nature 287 2830 10.1038/287028a0.CrossRefGoogle Scholar
Ruiz-Hitzky, E. Rojo, M. and Lagaly, G., (1985) Mechanism of the grafting of organosilanes on mineral surfaces Colloid Polymer Science 263 10251030 10.1007/BF01410996.CrossRefGoogle Scholar
Smirnov, V.A. Sukhadolski, G.A. Philippova, O.E. and Khokhlov, A.R., (1999) Use of luminescence of europium ions for the study of the interactions of polyelectrolyte hydrogels with multivalent cations Journal of Physical Chemistry, B 103 76217626 10.1021/jp9919821.CrossRefGoogle Scholar
Suib, S.L. and Carrado, K.A., (1985) Zeolite photochemistry: Energy transfer between rare-earth and actinide ions in zeolites Inorganic Chemistry 24 200202 10.1021/ic00196a016.CrossRefGoogle Scholar
Suib, S.L. Zerger, R.P. Morrison, T.I. and Shenoy, G.K., (1984) Journal of Chemical Physics 80 22032207 10.1063/1.446909.CrossRefGoogle Scholar
Wang, Z. Lan, T. and Pinnavaia, T.J., (1998) Hybrid organic-inorganic nanocomposites: exfoliation of magadiite nano-layers in an elastomeric epoxy polymer Chemistry of Materials 10 18201826 10.1021/cm970784o.CrossRefGoogle Scholar
Zaitoun, M.A. Goken, D.M. Bailey, L.S. Kim, T. and Lin, C.T., (2000) Thermoanalysis and emission properties of Eu3+/Eu2+ in Eu3+-doped xerogels Journal of Physical Chemistry, B 104 189196 10.1021/jp991873m.CrossRefGoogle Scholar