Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T23:47:51.781Z Has data issue: false hasContentIssue false

Preferred orientations and anisotropy in shales: Callovo-Oxfordian shale (France) and Opalinus Clay (Switzerland)

Published online by Cambridge University Press:  01 January 2024

H.-R. Wenk*
Affiliation:
Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
M. Voltolini
Affiliation:
Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
M. Mazurek
Affiliation:
Institute of Geological Sciences, University of Bern, Switzerland
L. R. Van Loon
Affiliation:
Paul Scherrer Institut, Villigen, Switzerland
A. Vinsot
Affiliation:
Andra, Laboratoire souterrain de Meuse/Haute-Marne, Bure, France
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Anisotropy in clay-rich sedimentary rocks is receiving increasing attention. Seismic anisotropy is essential in the prospecting for petroleum deposits. Anisotropy of diffusion has become relevant for environmental contaminants, including nuclear waste. In both cases, the orientation of component minerals is a critical ingredient and, largely because of small grain size and poor crystallinity, the orientation distribution of clay minerals has been difficult to quantify. A method is demonstrated that relies on hard synchrotron X-rays to obtain diffraction images of shales and applies the crystallographic Rietveld method to deconvolute the images and extract quantitative information about phase fractions and preferred orientation that can then be used to model macroscopic physical properties. The method is applied to shales from European studies which investigate the suitability of shales as potential nuclear waste repositories (Meuse/Haute-Marne Underground Research Laboratory near Bure, France, and Benken borehole and Mont Terri Rock Laboratory, Switzerland). A Callovo-Oxfordian shale from Meuse/Haute-Marne shows a relatively weak alignment of clay minerals and a random distribution for calcite. Opalinus shales from Benken and Mont Terri show strong alignment of illite-smectite, kaolinite, chlorite, and calcite. This intrinsic contribution to anisotropy is consistent with macroscopic physical properties where anisotropy is caused both by the orientation distribution of crystallites and high-aspect-ratio pores. Polycrystal elastic properties are obtained by averaging single crystal properties over the orientation distribution and polyphase properties by averaging over all phases. From elastic properties we obtain anisotropies for p waves ranging from 7 to 22%.

Type
Article
Copyright
Copyright © 2008, The Clay Minerals Society

References

Andra, 2005 Dossier 2005 Argile: Synthesis. Evaluation of the feasibility of a geological repository in an argillaceous formation France Andra.Google Scholar
Andra, 2005 Dossier 2005 Argile: Phenomenological evolution of a geological repository France Andra.Google Scholar
Andra, 2005 Dossier 2005 Argile: Référentiel du site de Meuse/Haute-Marne, Tome 2: Caractérisation comportementale du milieu géologique sous perturbation France Andra.Google Scholar
Andra, 2005 Dossier 2005 Argile: Référentiel du site de Meuse/Haute-Marne, Tome 1: Histoire géologique et état actuel France Andra.Google Scholar
Aplin, A.C. Matenaar, I.F. McCarty, D. and van der Pluijm, B.A., 2006 Influence of mechanical compaction and clay mineral diagenesis on the microfabric and pore-scale properties of deep water Gulf of Mexico mudstones Clays and Clay Minerals 54 501515.10.1346/CCMN.2006.0540411CrossRefGoogle Scholar
Banik, N.C., 1984 Velocity anisotropy of shales and depth estimation in the North Sea basin Geophysics 49 14111419.10.1190/1.1441770CrossRefGoogle Scholar
Bauer, C., Pouya, A., and Ghoreychi, M. (1997) Propriétés thermo-mécaniques des argilites silto-carbonatées de l’est. Andra report BRP0G3S97-001.Google Scholar
Bayuk, I. Ammermann, M. and Chesnokov, E., 2007 Elastic moduli of anisotropic clay Geophysics 72 D107D117.CrossRefGoogle Scholar
Bish, D.L. and Von Dreele, R.B., 1989 Rietveld refinement of non-hydrogen atomic positions in kaolinite Clays and Clay Minerals 37 289296 10.1346/CCMN.1989.0370401.10.1346/CCMN.1989.0370401CrossRefGoogle Scholar
Bock, H. (2001) Mont Terri Project. RA experiment: Rock mechanics analyses and synthesis; data report on rock mechanics. Mont Terri Consortium, Technical Report TR 2000–02.Google Scholar
Bossart, P. and Thury, M., 2007 Research in the Mont Terri Rock Laboratory: Quo vadis? Physics and Chemistry of the Earth 32 1931 10.1016/j.pce.2006.04.031.10.1016/j.pce.2006.04.031CrossRefGoogle Scholar
Bunge, H.-J. and Wenk, H.R., 1985 Physical properties of polycrystals Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis Orlando, Florida, USA Academic Press 507525.10.1016/B978-0-12-744020-0.50029-8CrossRefGoogle Scholar
Chen, B. and Evans, J.R.G., 2006 Elastic moduli of clay platelets Scripta Materialia 54 15811585.10.1016/j.scriptamat.2006.01.018CrossRefGoogle Scholar
Chen, C.-C. Lin, C.-C. Liu, L.-G. Sinogeikin, S.V. and Bass, J.D., 2001 Elasticity of single-crystal calcite and rhodochrosite by Brillouin spectroscopy American Mineralogist 86 15251529.10.2138/am-2001-11-1222CrossRefGoogle Scholar
Claret, F. Sakharov, B.A. Drits, V.A. Velde, B. Meunier, A. Griffault, L. and Lanson, B., 2004 Clay minerals in the Meuse-Haute Marne underground laboratory (France): Possible influence of organic matter on clay mineral evolution Clays and Clay Minerals 52 515532.10.1346/CCMN.2004.0520501CrossRefGoogle Scholar
Collins, D.R. and Catlow, C.R.A., 1992 Computer simulation of structures and cohesive properties of micas American Mineralogist 77 11721181.Google Scholar
Crampin, S., 1981 A review of wave motion in anisotropic and cracked elastic media Wave Motion 3 242391.10.1016/0165-2125(81)90026-3CrossRefGoogle Scholar
Delay, J. Vinsot, A. Krieguer, J.M. Rebours, H. and Armand, G., 2007 Making of the underground scientific experimental programme at the Meuse/Haute-Marne underground research laboratory, North Eastern France Physics and Chemistry of the Earth 32 218.10.1016/j.pce.2006.04.033CrossRefGoogle Scholar
Dollase, W.A., 1986 Correction of intensities for preferred orientation in powder diffractometry: Application of the March model Journal of Applied Cystallography 19 267272.10.1107/S0021889886089458CrossRefGoogle Scholar
Drits, V.A. and Tchoubar, C., 1990 X-ray diffraction by Disordered Lamellar Structures: Theory and Applications to Microdivided Silicates and Carbons Berlin Springer-Verlag.CrossRefGoogle Scholar
Esteban, L. Géraud, Y. and Bouchez, J.-L., 2007 Pore network connectivity anisotropy in Jurassic argillite specimens from eastern Paris Basin (France) Physics and Chemistry of the Earth 32 161169.10.1016/j.pce.2005.11.001CrossRefGoogle Scholar
Gaucher, E. Robelin, C. Matray, J.M. Negrel, G. Gros, Y. Heitz, J.F. Vinsot, A. Rebours, H. Cassabagnere, A. and Bouchet, A., 2004 ANDRA underground research laboratory: interpretation of the mineralogical and geochemical data acquired in the Callovo-Oxfordian Formation by investigative drilling Physics and Chemistry of the Earth 29 5577.10.1016/j.pce.2003.11.006CrossRefGoogle Scholar
Gautschi, A., 2001 Hydrogeology of a fractured shale (Opalinus Clay): Implications for deep geological disposal of radioactive wastes Hydrogeological Journal 9 97107.10.1007/s100400000117CrossRefGoogle Scholar
Grathoff, G.H. and Moore, D.M., 1996 Illite polytype quantification using WILDFIRE calculated X-ray diffraction patterns Clays and Clay Minerals 44 835842.CrossRefGoogle Scholar
Gualtieri, A.F., 2000 Accuracy of XRPD QPA using the combined Rietveld-RIR method Journal of Applied Crystallography 33 267278 10.1107/S002188989901643X.10.1107/S002188989901643XCrossRefGoogle Scholar
Guggenheim, S. Bain, D.C. Bergaya, F. Brigatti, M.F. Drits, V.A. Eberl, D.D. Formoso, M.L.L. Galán, E. Merriman, R.J. Peacor, D.R. Stanjek, H. and Watanabe, T., 2002 Report of the Association Internationale pour l’Etude des Argiles (AIPA) Nomenclature Committee for 2001: Order, disorder and crystallinity in phyllosilicates and use of the ‘crystallinity index’ Clays and Clay Minerals 50 406409.CrossRefGoogle Scholar
Hammersley, A.P. (1998) Fit2D: V99.129 Reference Manual Version 3.1. Internal Report ESRF — 98 — HA01.Google Scholar
Heyliger, P. Ledbetter, H. and Kim, S., 2002 Elastic constants of natural quartz Journal of the Acoustical Society of America 114 644650.CrossRefGoogle Scholar
Hillier, S., 2000 Accurate quantitative analysis of clay and other minerals in sandstones by XRD; comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation Clay Minerals 35 291302.10.1180/000985500546666CrossRefGoogle Scholar
Ho, N.C. Peacor, D.R. and Van der Pluijm, B.A., 1995 Reorientation mechanisms of phyllosilicates in the mud-stone-to-slate transition at Lehigh Gap, Pennsylvania Journal of Structural Geology 17 345356.10.1016/0191-8141(94)00065-8CrossRefGoogle Scholar
Ho, N.C. Peacor, D.R. and Van der Pluijm, B.A., 1999 Preferred orientation of phyllosilicates in Gulf Coast mudstones and relation to the smectite-illite transition Clays and Clay Minerals 47 485504.Google Scholar
Homand, F. Shao, J.-F. Giraud, A. Auvray, C. and Hoxha, D., 2006 Petrofabric and mechanical properties of mudstones Comptes rendus Geoscience 338 882891.10.1016/j.crte.2006.03.009CrossRefGoogle Scholar
Hornby, B.E., 1998 Experimental laboratory determination of the dynamic elastic properties of wet, drained shales Journal of Geophysical Research 103 B12 2994529964.10.1029/97JB02380CrossRefGoogle Scholar
Hornby, B.E. Schwartz, L.M. and Hudson, J.A., 1994 Anisotropic effective-medium modelling of the elastic properties of shales Geophysics 59 15701583.10.1190/1.1443546CrossRefGoogle Scholar
Jacob, G. Kisch, H.J. and van der Pluijm, B.A., 2000 The relationship of phyllosilicate preferred orientations, X-ray diffraction intensity ratios and c/b fissility ratios in metasedimentary rocks of the Helvetic zone of the Swiss Alps and the Caledonides of Jamtland, central western Sweden Journal of Structural Geology 22 245258.10.1016/S0191-8141(99)00149-2CrossRefGoogle Scholar
Johnston, J.E. and Christensen, N.I., 1995 Seismic anisotropy of shales Journal of Geophysical Research 100 59916003.10.1029/95JB00031CrossRefGoogle Scholar
Jones, L.E.A. and Wang, H.F., 1981 Ultrasonic velocities in Cretaceous shales from the Williston Basin Geophysics 46 288297.10.1190/1.1441199CrossRefGoogle Scholar
Joswig, W. Fuess, H. Rothbauer, R. Takeuchi, Y. and Mason, S.A., 1980 A neutron diffraction study of a one-layer triclinic chlorite (penninite) American Mineralogist 65 349352.Google Scholar
Katahara, K.W. (1996) Clay mineral elastic properties. 66th SEG meeting, Denver, USA, expanded Abstracts, pp. 16911694.10.1190/1.1826454CrossRefGoogle Scholar
Larson, A.C. and Von Dreele, R.B. (2004) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86748.Google Scholar
Lonardelli, I. Wenk, H.-R. and Ren, Y., 2007 Preferred orientation and elastic anisotropy in shales Geophysics 72 D33D40.CrossRefGoogle Scholar
Lutterotti, L. Matthies, S. and Wenk, H.-R., 1999 MAUD: a friendly Java program for materials analysis using diffraction International Union of Crystallography Committee Powder Diffraction Newsletter 21 1415.Google Scholar
March, A., 1932 Mathematische Theorie der Regelung nach der Korngestalt bei affiner Deformation Zeitschrift für Kristallographie 81 285297.10.1524/zkri.1932.81.1.285CrossRefGoogle Scholar
Matthies, S. and Humbert, M., 1993 The realization of the concept of a geometric mean for calculating physical constants of polycrystalline materials Physica Status Solidi B177 K47K50.Google Scholar
Matthies, S. and Vinel, G.W., 1982 On the reproduction of the orientation distribution function of textured samples from reduced pole figures using the concept of conditional ghost correction Physica Status Solidi B112 K111K114.Google Scholar
Mazurek, M. Hurford, A.J. and Leu, W., 2006 Unravelling the multi-stage burial history of the Swiss Molasse Basin: Integration of apatite fission track, vitrinite reflectance and biomarker isomerisation analysis Basin Research 18 2750.10.1111/j.1365-2117.2006.00286.xCrossRefGoogle Scholar
McCusker, L.B. Von Dreele, R.B. Cox, D.E. Louërd, D. and Scardi, P., 1999 Rietveld refinement guidelines Journal of Applied Crystallography 32 3650.CrossRefGoogle Scholar
Monecke, T. Koehler, S. Kleeberg, R. Herzig, P.M. and Gemmell, J.B., 2001 Quantitative phase analysis by the Rietveld method using X-ray powder diffraction data: Application to the study of alteration halos associated with volcanic-rock-hosted massive sulfide deposits The Canadian Mineralogist 39 16171633.10.2113/gscanmin.39.6.1617CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C., 1997 X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press 378 pp.Google Scholar
Nagra, 2002 Projekt Opalinuston — Synthese der geowissenschaftlichen Untersuchungsergebnisse. Entsorgungsnachweis für abgebrannte Brennelemente, verglaste hochaktive sowie langlebige mittelaktive Abfälle Wettingen, Switzerland Nagra.Google Scholar
Oertel, G., 1983 The relationship of strain and preferred orientation of phyllosilicate grains in rocks — review Tectonophysics 100 413447.CrossRefGoogle Scholar
Oertel, G. and Curtis, C.D., 1972 Clay-ironstone concretion preserving fabrics due to progressive compaction Geological Society of America Bulletin 83 25972606.10.1130/0016-7606(1972)83[2597:CCPFDT]2.0.CO;2CrossRefGoogle Scholar
Oertel, G. and Phakey, P.P., 1972 The texture of a slate from Nantille, Caernarvon, North Wales Texture 1 18.10.1155/TSM.1.1CrossRefGoogle Scholar
Omotoso, O. McCarty, D.K. Hillier, S. and Kleeberg, R., 2006 Some successful approaches to quantitative mineral analysis as revealed by the 3rd Reynolds Cup contest Clays and Clay Minerals 54 748760.10.1346/CCMN.2006.0540609CrossRefGoogle Scholar
Pearson, F J Arcos, D. Bath, A. Boisson, J.Y. Fernandez, A.M. Gäbler, H.E. Gaucher, E. Gautschi, A. Griffault, L. Hernan, P. and Waber, H.N., 2003 Mont Terri project — Geochemistry of water in the Opalinus Clay formation at the Mont Terri Rock Laboratory Bern, Switzerland Federal Office for Water and Geology Report 5.Google Scholar
Pellenard, P. Deconinck, J.F. Marchand, D. Thierry, J. Fortwengler, D. and Vigneron, G., 1999 Eustatic and volcanic influence during Middle Callovian Oxfordian clay sedimentation in the eastern part of the Paris Basin Compte rendus de l’Academie des Sciences 328 807813.Google Scholar
Pellenard, P. and Deconinck, J.-F., 2006 Mineralogical variability of Callovo-Oxfordian clays from the Paris basin and the Subalpine Basin Comptes rendus Geoscience 338 854866.10.1016/j.crte.2006.05.008CrossRefGoogle Scholar
Ponte Castaneda, P. and Willis, J.R., 1995 The effect of spatial distribution on the effective behaviour of composite materials and cracked media Journal of the Mechanics and Physics of Solids 43 19191951.10.1016/0022-5096(95)00058-QCrossRefGoogle Scholar
Popa, N.C., 1998 The hkl dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement Journal of Applied Crystallography 31 176180.10.1107/S0021889897009795CrossRefGoogle Scholar
Rebours, H., Armand, G., Cruchaudet, M., Dewonck, S., Morel, J., Righini, C., Vinsot, A., and Wileveau, Y. (2007) Bilan 2006 des études et travaux menés par le laboratoire sur la formation du Callovo-Oxfordien. Andra report DRPALS07-0496.Google Scholar
Rietveld, H.M., 1969 A profile refinement method for nuclear and magnetic structures Journal of Applied Crystallography 2 6571.10.1107/S0021889869006558CrossRefGoogle Scholar
Sakharov, B.A. Lindgreen, H. Salyn, A. and Drits, V., 1999 Determination of illite-smectite structures using multispecimen XRD profile fitting Clays and Clays Minerals 47 555566.10.1346/CCMN.1999.0470502CrossRefGoogle Scholar
Sammartino, S., Bouchet, A., and Parneix, J.-C. (2001) Construction d’un modèle conceptuel de la porosité et de la minéralogie dans les argilites du site de Bure. Andra report DRP0ERM01-018.Google Scholar
Sammartino, S. Siitari-Kauppi, M. Meunier, A. Sardini, P. Bouchet, A. and Tevissen, E., 2002 An imaging method for the porosity of sedimentary rocks: Adjustment of the PMMA method — Example of a characterization of a calcareous shale Journal of Sedimentary Research 72 937943.10.1306/053002720937CrossRefGoogle Scholar
Sammartino, S. Bouchet, A. Prêt, D. Parneix, J.-C. and Tevissen, E., 2003 Spatial distribution of porosity and minerals in clay rocks from the Callovo-Oxfordian formation (Meuse/Haute-Marne, Eastern France) — implications on ionic species diffusion and rock sorption capability Applied Clay Science 23 157166.CrossRefGoogle Scholar
Sato, H. Ono, K. Johnston, C.T. and Yamagishi, A., 2005 First-principles studies on elastic constants of a 1:1 layered kaolinite mineral American Mineralogist 90 18241826.10.2138/am.2005.1832CrossRefGoogle Scholar
Sayers, C.M., 1994 The elastic anisotropy of shales Journal of Geophysical Research 99 767774.CrossRefGoogle Scholar
Sayers, C.M., 2005 Seismic anisotropy of shales Geophysical Prospecting 53 667676.10.1111/j.1365-2478.2005.00495.xCrossRefGoogle Scholar
Schoenberg, M. and Sayers, C.M., 1995 Seismic anisotropy of fractured rock Geophysics 60 204211.CrossRefGoogle Scholar
Sintubin, M., 1994 Clay fabrics in relation to the burial history of shales Sedimentology 41 11611169.CrossRefGoogle Scholar
Sintubin, M., 1994 Phyllosilicate preferred orientation in relation to strain path determination in the lower Paleozoic Stavelot-Venn Massif (Ardennes, Belgium) Tectonophysics 237 215231.10.1016/0040-1951(94)90256-9CrossRefGoogle Scholar
Solum, J.G., van der Pluijm, B.A., Peacor, D.R., and Warr, L.N. (2003) Mineralogy and microfabric of the Punchbowl Fault, an exhumed segment of the San Andreas Fault system. Journal of Geophysical Research, 108, doi: i10.1029/2002JB001858.Google Scholar
Solum, J.G. van der Pluijm, B.A. and Peacor, D.R., 2005 Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah Journal of Structural Geology 27 15631576.10.1016/j.jsg.2005.05.002CrossRefGoogle Scholar
Stixrude, L. and Peacor, D.R., 2002 First-principles study of illite-smectite and implications for clay mineral systems Nature 420 165168.10.1038/nature01155CrossRefGoogle ScholarPubMed
Thomsen, L., 1986 Weak elastic anisotropy Geophysics 51 19541966.CrossRefGoogle Scholar
Thomsen, L., 1995 Elastic anisotropy due to aligned cracks in porous rock Geophysical Prospecting 43 805829.10.1111/j.1365-2478.1995.tb00282.xCrossRefGoogle Scholar
Thury, M. and Bossart, P., 1999 The Mont Terri rock laboratory, a new international research project in a Mesozoic shale formation, in Switzerland Engineering Geology 52 347359.10.1016/S0013-7952(99)00015-0CrossRefGoogle Scholar
Trouiller, A., 2006 The Callovo-Oxfordian of the Paris Basin: From its geological context to the modelling of its properties Comptes rendus Geosciences 338 815823.10.1016/j.crte.2006.09.003CrossRefGoogle Scholar
Ufer, G. Roth, G. Kleeberg, R. Stanjek, H. Dohrmann, R. and Bergmann, J., 2004 Description of X-ray powder pattern of turbostratically disordered layer structures with a Rietveld compatible approach Zeitschrift für Kristallographie 219 519527.10.1524/zkri.219.9.519.44039CrossRefGoogle Scholar
Valcke, S.L.A. Casey, M. Lloyd, G.E. Kendall, J.-M. and Fisher, Q.J., 2006 Lattice preferred orientation and seismic anisotropy in sedimentary rocks Geophysical Journal International 166 652666.CrossRefGoogle Scholar
Van Loon, L.R. and Soler, J.M., 2004 Diffusion of HTO, 36Cl, 125I and 22Na+ in Opalinus Clay: Effect of confining pressure, sample orientation, sample depth and temperature Villigen, Switzerland Paul Scherrer Insitut.Google Scholar
Van Loon, L.R. Soler, J.M. Müller, W. and Bradbury, M.H., 2004 Anisotropic diffusion in layered argillaceous rocks: a case study with Opalinus clay Environmental Science and Technology 38 57215728.10.1021/es049937gCrossRefGoogle ScholarPubMed
Vaughan, M.T. and Guggenheim, S., 1986 Elasticity of muscovite and its relationship to crystal structure Journal of Geophysical Research 91 46574664.CrossRefGoogle Scholar
Vernik, L. and Liu, X., 1997 Velocity anisotropy in shales: A petrophysical study Geophysics 62 521532.10.1190/1.1444162CrossRefGoogle Scholar
Vernik, L. and Nur, A., 1992 Ultrasonic velocity and anisotropy of hydrocarbon source rocks Geophysics 57 727735.10.1190/1.1443286CrossRefGoogle Scholar
Viani, A. Gualtieri, A. and Artioli, G., 2002 The nature of disorder in montmorillonite by simulation of X-ray powder pattern American Mineralogist 87 966975.10.2138/am-2002-0720CrossRefGoogle Scholar
Wang, Z., 2002 Seismic anisotropy in sedimentary rocks, part 2: Laboratory data Geophysics 67 14231440.10.1190/1.1512743CrossRefGoogle Scholar
Wenk, H.-R. Venkitasubramayan, C.S. Baker, D.W. and Turner, F.J., 1973 Preferred orientation in experimentally deformed limestone Contributions to Mineralogy and Petrology 38 81114.10.1007/BF00373875CrossRefGoogle Scholar
Wenk, H.-R. Matthies, S. Donovan, J. and Chateigner, D., 1998 BEARTEX, a Windows-based program system for quantitative texture analysis Journal of Applied Crystallography 31 262269.CrossRefGoogle Scholar
Wenk, H.-R. Lonardelli, I. Pehl, J. Devine, J. Prakapenka, V. Shen, G. and Mao, H.-K., 2004 In situ observation of texture development in olivine, ringwoodite, magnesiowuestite and silicate perovskite at high pressure Earth and Planetary Science Letters 226 507519.CrossRefGoogle Scholar
Wenk, H.-R. Lonardelli, I. Franz, H. Nihei, K. and Nakagawa, S., 2007 Preferred orientation and elastic anisotropy of illite-rich shale Geophysics 72 E69E75.CrossRefGoogle Scholar
Yan, Y. van der Pluijm, B.A. Peacor, D.R., Holdsworth, R.E. Strachan, R.A. Magloughlin, J.F. Knipe, R.J., 2001 Deformation microfabrics of clay gouge, Lewis Thrust, Canada: a case for fault weakening from clay transformation The Nature and Tectonic Significance of Fault Zone Weakening London Geological Society 103112.Google Scholar
Young, R.A., 1993 The Rietveld Method Oxford UK Oxford University Press 298 pp.CrossRefGoogle Scholar
Yven, B. Sammartino, B. Géraud, Y. Homand, F. and Villiéras, F., 2006 Mineralogy, texture and porosity of Callovo-Oxfordian argillites of the Meuse/Haute-Marne region (eastern Paris Basin). Assemblage minéralogique, texture et porosité des argilites Mémoires de la Société géologique de France 178 7390.Google Scholar