Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-29T04:19:24.548Z Has data issue: false hasContentIssue false

Potassium- and Ammonium-Treated Montmorillonites. I. Interstratified Structures with Ethylene Glycol and Water

Published online by Cambridge University Press:  01 July 2024

Blahoslav Číčel
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta, 809 34 Bratislava, Czechoslovakia
Daniel Machajdík
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta, 809 34 Bratislava, Czechoslovakia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Monoionic K- and NH4-smectites saturated with ethylene glycol form mixed-layer structures which usually consist of three kinds of layers: a 10-Å, non-expanded layer; a 14-Å, partly expanded layer; and a 16.8-Å, completely expanded layer. In some samples, the 14-Å layers formed 60–70% of all layers present. When saturated with water vapor the smectites commonly consisted of three kinds of layers (10-, 12.6-, and 15.5-Å). Generally these samples contained fewer expanded layers than those saturated with ethylene glycol. This result is attributed to the smaller dipole moment of water compared with that of ethylene glycol. The greater solvation energy of NH4+ in comparison with that of K+ causes the expansion of a part of layers which did not expand in the K forms. This result indicates that there is an inhomogeneous distribution of layer charge in the smectite structure. The prevalent type of mixed layering in the studied samples is that of random distribution of layers.

Резюме

Резюме

Моноионные К- и NH4-смектиты, насыщенные этиленовым гликолем образуют структуры смешенных слоев, которые обычно состоят из трех типов: 10-Å, нерасширенный слой; 14-Å, частично расширенный слой; и 16,8-Å, полностью расширенный слой. В некоторых образцах 14-Å слои составляли 60–70% от всех слоев. Смектиты, насыщенные водяным паром обычно состояли из трех типов слоев (10-, 12,6-, и 15,5-Å). В основном эти образцы содержали меньше расширенных слоев, чем образцы, насыщенные этиленовым гликолем. Этот результат относится к меньшему дипольному моменту воды по сравнению с этиленовым гликолем. Большая энергия сольватации для NH4+, чем для К+ вызывает расширение части слоев, которые не расширяются в К-формах. Этот результат указывает, что имеется негомогенное распределение слойного заряда в структуре смектита. Преобладающим типом смешанных слоев в изученных образцах является беспорядочное распределение слоев. [Е.С.]

Resümee

Resümee

Mono-ionische, mit Ethylenglycol-gesättigte K- und NH4-Smektite bilden Wechsellagerungsstrukturen, die gewöhnlich aus drei Schichtarten bestehen: Eine nicht expandierte 10 Å-Schicht, eine teilweis expandierte 14 Å-Schicht und eine vollständig expandierte 16,8 Å-Schicht. In einigen Proben machten die 14 Å-Schichten 60–70% aller vorhandenen Schichten aus. Bei Wasserdampfsättigung bestanden die Smektite aus drei Schichtarten (10, 12,6, und 15,5 Å). Im allgemeinen enthielten diese Proben weniger expandierte Lagen als die Ethylenglycol-gesättigten Proben. Dieses Ergebnis wird auf das im Vergleich zu Ethylenglycol kleinere Dipolmoment des Wassers zurückgeführt. Die größere Solvatationsenergie von NH4+ verglichen mit der von K+ verursacht die Expansion eines Teils der Schichten, die in den K-Formen nicht expandierten. Dieses Ergebnis deutet darauf hin, daß in der Smektitstruktur eine inhomogene Verteilung der Schichtladung vorhanden ist. Der vorherrschende Typ von Wechsellagerung in den untersuchten Proben ist der mit einer statistischen Verteilung der Schichten. [U.W.]

Résumé

Résumé

Des smectites monoioniques-K et -NH4 saturées de glycol éthylène forment des structures à couches mélangées qui consistent généralement de trois sortes de couches: une couche 10-Å non-enflée, une couche 14-Å partiellement enflée, et une couche 16-Å entièrement enflée. Dans certains échantillons, les couches 14-Å formaient de 60 à 70% de toutes les couches présentes. Lorsqu'elles étaient saturées de vapeur d'eau, les smectites consistaient habituellement de trois sortes de couches (10-Å, 12,6-Å, et 15,5-Å). Ces échantillons contenaient généralement moins de couches enflées que ceux saturés de glycol éthylène. Ce résultat est attribué au plus petit moment dipôle de l'eau comparé à celui du glycol éthylène. L’énergie plus grande de solvation de NH4+ en comparaison avec celle de K+ cause l'expansion d'une partie des couches qui ne s’était pas enflée dans les formes K. Ce résultat indique qu'il y a une distribution non-homogène de charge de couche dans la structure d'une smectite. Le type prévalent de mélange de couches dans les échantillons étudiés est celui de la distribution de couches au hasard. [D.J.]

Type
Research Article
Copyright
Copyright © 1981, The Clay Minerals Society

References

Bradley, W. F. Weiss, E. J. Rowland, R. A. and Franks, P. C., (1963) A glycol-sodium vermiculite complex Clays and Clay Minerals, Proc. 10th Nat. Conf., Austin, Texas, 1961 New York Pergamon Press 117122.Google Scholar
Brindley, G. W., (1966) Ethylene glycol and glycerol complexes of smectites and vermiculites Clay Miner. 6 237259.CrossRefGoogle Scholar
Cole, W. F., (1966) Study of a long-spacing mica-like mineral Clay Miner. 6 261281.Google Scholar
Cole, W. F. and Lancucky, C. J., (1966) Tabular data of layer structure factors for clay minerals Acta Crystallog. 21 836838.CrossRefGoogle Scholar
Dyal, R. S. and Hendricks, S. B., (1952) Formation of mixed layer minerals by potassium fixation in montmorillonite Soil Sci. Soc. Amer. Proc. 16 4548.CrossRefGoogle Scholar
Horváth, I. Novák, I. and Bailey, S. W., (1976) Potassium fixation and the charge of montmorillonite layer Proc. Int. Clay Conf., Mexico City, 1975 Wilmette, Illinois Applied Publishing 185189.Google Scholar
Kinter, E. B. Diamond, S. and Swineford, A., (1958) Gravimetric determination of monolayer glycerol complexes of clay minerals Clays and Clay Minerals, Proc. 5th Nat. Conf., Urbana, Illinois, 1956 Washington, D.C. Nat. Acad. Sci. Nat. Res. Counc. Publ. 318333.Google Scholar
MacEwan, D. M. C., (1956) Fourier transform methods for studying scattering from lamellar systems: I. A direct method for analysing interstratified mixtures KolloidZ. 149 96108.CrossRefGoogle Scholar
MacEwan, D. M. C., (1961) Montmorillonite minerals The X-ray Identification and Crystal Structures of Clay Minerals London Mineralogical Society 143207.Google Scholar
MacEwan, D. M. C. Ruiz Amil, A. and Brown, G., (1961) Interstratified clay minerals The X-ray Identification and Crystal Structures of Clay Minerals London Mineralogical Society 393445.Google Scholar
Machajdík, D. Číčel, B. and Konta, J., (1973) Mixed-layering of K+ and NH4+ forms of iron-bearing montmorillonite Proc. 6th Conf. Clay Mineralogy and Petrology, Prague Prague Universita Karlova 8793.Google Scholar
Machajdík, D. Číčel, B. and Konta, J., (1977) Differences in stackingorder of the I-M structures obtained in K-saturated montmorillonites Proc. 7th Conf. Clay Mineralogy and Petrology, Prague Prague Universita Karlova 6166.Google Scholar
Muravyov, V. I. and Sakharov, B. A., (1970) Experimental study of the sorption of potassium by montmorillonite Sedimentology 15 103113.CrossRefGoogle Scholar
Novák, I. and Číčel, B., (1978) Dissolution of smectites in hydrochloric acid: II. Dissolution rate as a function of crystallochemical composition Clays & Clay Minerals 26 341344.Google Scholar
Reynolds, R. C., (1965) An X-ray study of an ethylene glycolmontmorillonite complex Amer. Mineral. 50 9901001.Google Scholar
Reynolds, R. C. and Hower, J., (1970) The nature of interlayering in mixed-layer illite-montmorillonites Clays & Clay Minerals 18 2536.CrossRefGoogle Scholar
Sawhney, B. L., (1969) Regularity of interstratification as affected by charge density in layer silicates Soil Sci. Soc. Amer. Proc. 33 4246.CrossRefGoogle Scholar
Shutov, V. D. Drits, V. A. Sakharov, B. A. and Heller, L., (1969) On the mechanism of a postsedimentary transformation of montmorillonite into hydromica Proc. Internal. Clay Conf, Tokyo, 1969, Vol. 1 Jerusalem Israel Univ. Press 523531.Google Scholar
Tettenhorst, R. Johns, W. D., Bradley, W. F. and Bailey, S. W., (1966) Interstratification in montmorillonites Clays and Clay Minerals, Proc. 13th Nat. Conf., Madison, Wisconsin, 1964 New York Pergamon Press 8593.Google Scholar