Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T15:18:48.589Z Has data issue: false hasContentIssue false

Possible Role of Microbial Polysaccharides in Nontronite Formation

Published online by Cambridge University Press:  28 February 2024

Masato Ueshima
Affiliation:
Department of Earth Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
Kazue Tazaki
Affiliation:
Department of Earth Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nontronite and microbes were detected in the surface layers of deep-sea sediments from Iheya Basin, Okinawa Trough, Japan. Nontronite, an Fe-rich smectite mineral, was embedded in acidic polysaccharides that were exuded by microbial cells and electron microscopy showed that the nontronite layers were apparently oriented in the polysaccharide materials. We propose that the formation of nontronite was induced by the accumulation of Si and Fe ions from the ambient seawater and that extracellular polymeric substances (EPS) served as a template for layer-silicate synthesis. Experimental evidence for this hypothesis was obtained by mixing a solution of polysaccharides (dextrin and pectin) with ferrosiliceous groundwater. After stirring the mixture in a sealed vessel for two days, and centrifuging, Fe-rich layer silicates were identified within the precipitate of both the dextrin and pectin aggregates, whereas rod-shaped or spheroidal Si-bearing iron hydroxides were found in the external solution. Microbial polysaccharides would appear to have affected layer-silicate formation.

Type
Research Article
Copyright
Copyright © 2001, The Clay Minerals Society

References

Aizenberg, J. Black, A. J. and Whitesides, G. M., 1999 Control of crystal nucleation by patterned self-assembled monolayers Nature 398 495498 10.1038/19047.CrossRefGoogle Scholar
Akai, J. Akai, K. Ito, M. Nakano, S. Maki, Y. and Sasa-gawa, I., 1999 Biologically induced iron ore at Gunma iron mine, Japan American Mineralogist 84 171182 10.2138/am-1999-1-219.CrossRefGoogle Scholar
Badaut, D. Decarreau, A. and Besson, G., 1992 Ferri-pyrophyllite and related Fe3+-rich 2:1 clays in recent deposits of Atlantis II Deep, Red Sea Clay Minerals 27 227244 10.1180/claymin.1992.027.2.07.CrossRefGoogle Scholar
Barker, W. W. and Banfield, J. F., 1996 Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiontis communities Chemical Geology 132 5569 10.1016/S0009-2541(96)00041-1.CrossRefGoogle Scholar
Barker, W. W. Welch, S. A. Banfield, J. F., Banfield, J. F. and Nealson, K. H., 1997 Geomi-crobiology of silicate mineral weathering Geomicrobiology: Interactions between Microbes and Minerals 391428 10.1515/9781501509247-014.CrossRefGoogle Scholar
Barker, W. W. Welch, S. A. Chu, S. and Banfield, J. F., 1998 Experimental observation of the effect of bacteria on alu-minosilicate weathering American Mineralogist 83 15511563 10.2138/am-1998-11-1243.CrossRefGoogle Scholar
Beveridge, T. J., Leadbetter, E. R. and Poidex-ter, J. S., 1989 The structure of bacteria Bacteria in Nature: a Treatise on the Interaction of Bacteria and their Habitats 165.CrossRefGoogle Scholar
Cole, T. G. and Shaw, H. F., 1983 The nature and origin of authigenic smectites in some recent marine sediments Clay Minerals 18 239252 10.1180/claymin.1983.018.3.02.CrossRefGoogle Scholar
Decarreau, A. and Bonnin, D., 1986 Synthesis and crystal-logenesis at low temperature of Fe(III)-smectites by evolution of coprecipitated gels: Experiments in partially reducing conditions Clay Minerals 21 861877 10.1180/claymin.1986.021.5.02.CrossRefGoogle Scholar
Decarreau, A. Bonnin, D. Badaut-Trauth, D. Couty, R. and Kaiser, P., 1987 Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions Clay Minerals 22 207223 10.1180/claymin.1987.022.2.09.CrossRefGoogle Scholar
Ferris, F. G. Beveridge, T. J. and Fyfe, W. S., 1986 Iron-silica crystallite nucleation by bacteria in a geothermal sediment Nature 320 609611 10.1038/320609a0.CrossRefGoogle Scholar
Fisk, M. R. Giovannoni, S. J. and Thorseth, I. H., 1998 Alteration of oceanic volcanic glass: Textural evidence of microbial activity Science 281 978980 10.1126/science.281.5379.978.CrossRefGoogle ScholarPubMed
Fortin, D. Davis, B. and Beveridge, T. J., 1996 Role of Thio-bacillus and sulfate-reducing bacteria in iron biocycling in oxic and acidic mine tailings FEMS Microbiology Ecology 21 1124 10.1111/j.1574-6941.1996.tb00329.x.CrossRefGoogle Scholar
Fortin, D. Ferris, F. G. Beveridge, T. J., Banfield, J. F. and Nealson, K. H., 1997 Surface-mediated mineral development by bacteria. Pp. 161–180 Geomicrobiology: Interactions between Microbes and Minerals .CrossRefGoogle Scholar
Fortin, D. Ferris, F. G. and Scott, S. D., 1998 Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the northeast Pacific Ocean American Mineralogist 83 13991408 10.2138/am-1998-11-1229.CrossRefGoogle Scholar
Gamo, T. Ishibashi, J. Sakai, H. Kodera, M. Igarashi, G. Ozima, M. Akagi, T. and Masuda, A., 1987 Geochemistry of hydrothermal solutions in the Okinawa Trough: Report on Dive of the SHINKAI 2000 JAMSTECTR Deepsea Research 213224.Google Scholar
Harder, H., 1976 Nontronite synthesis at low temperatures Chemical Geology 18 169180 10.1016/0009-2541(76)90001-2.CrossRefGoogle Scholar
Harder, H., 1978 Synthesis of iron layer silicate minerals under natural conditions Clays and Clay Minerals 26 6572 10.1346/CCMN.1978.0260108.CrossRefGoogle Scholar
Hobbie, J. E. Daley, R. J. and Jasper, S., 1977 Use of Nucle-pore Filters for counting bacteria by fluorescence microscopy Applied and Environmental Microbiology 33 12251228.CrossRefGoogle ScholarPubMed
Inoue, K. and Huang, P. M., 1984 Influence of citric acid on the natural formation of imogolite Nature 308 5860 10.1038/308058a0.CrossRefGoogle Scholar
Inoue, K. and Huang, R. M., 1990 Perturbation of imogolite formation by humie substances Soil Science Society of America Journal 54 14901497 10.2136/sssaj1990.03615995005400050046x.CrossRefGoogle Scholar
van Jongmans, A. G. Breemen, N. van Lundström, U. Hees, P A W Finlay, R. D. Srinivasan, M. Unestam, T. Giesler, R. Melkerud, P.-A. and Olsson, M., 1997 Rock-eating fungi Nature 389 682683 10.1038/39493.CrossRefGoogle Scholar
Juniper, S. K. Tebo, M. and Karl, D. M., 1995 Microbe-metal interactions and mineral deposition at hydrothermal vents. Pp. 219–253 The Microbiology of Deep-sea Hydrothermal Vents .Google Scholar
Kimura, M. Uyeda, S. Kato, Y. Tanaka, T. Yamano, M. Gamo, T. Sakai, H. Kato, S. Izawa, E. and Oomori, T., 1988 Active hydrothermal mounds in the Okinawa Trough backarc basin, Japan Tectonophysics 145 319324 10.1016/0040-1951(88)90203-X.CrossRefGoogle Scholar
Köhler, B. Singer, A. and Stoffers, P., 1994 Biogenic nontronite from marine white smoker chimneys Clays and Clay Minerals 42 689701 10.1346/CCMN.1994.0420605.CrossRefGoogle Scholar
Konhauser, K. O. Fisher, Q. J. Fife, W. S. Longstaffe, F.J. and Powell, M. A., 1998 Authigenic mineralization and detrital clay binding by freshwater biofilms: the Brahmani River, India Geomicrobiology Journal 15 209222 10.1080/01490459809378077.CrossRefGoogle Scholar
Lierman, L. J. Karinowski, B. E. Brantley, S. L. and Ferry, J. G., 2000 Role of bacterial siderophores in dissolution of hornblende Geochimica et Cosmochimica Acta 64 587602 10.1016/S0016-7037(99)00288-4.CrossRefGoogle Scholar
Masuda, H., Sakai, H. and Nozaki, Y., 1995 Iron-rich smectite formation in the hydrothermal sediment of Iheya Basin, Okinawa Trough Biogeochernical Processes and Ocean Flux in the Western Pacific 509521.Google Scholar
Masuda, H. Ishibashi, J. Kato, Y. Gamo, T. and Sakai, H., 1987 Oxygen isotope ratio and trace element composition of hydrothermal sediments from Okinawa Trough, collected with SHINKAI 2000, Dive 231 JAMSTECTR Deepsea Research 225231.Google Scholar
Moore, D. M. and Reynolds, R.C., 1997 X-ray Diffraction and the Identification and Analysis of Clay Minerals .Google Scholar
Newman, D. K. Ahmann, D. and Morel, F M M, 1998 A brief review of microbial arsenate respiration Geomicro-biology Journal 15 255268 10.1080/01490459809378082.CrossRefGoogle Scholar
Porter, K. G. and Feig, Y. S., 1980 The use of DAPI for identifying and counting aquatic microflora American Society of Limnology and Oceanography 25 943948 10.4319/lo.1980.25.5.0943.CrossRefGoogle Scholar
Schultze-Lam, S. Ferris, F. G. Sherwood-Lollar, B. and Gerits, J. P., 1996 Ultrastructure and seasonal growth patterns of microbial mats in a temperate climate saline-alkaline lake: Goodenough Lake, British Columbia, Canada Canadian Journal of Microbiology 42 147161 10.1139/m96-023.CrossRefGoogle Scholar
Schultze-Lam, S. Fortin, D. and Beveridge, T. J., 1996 Mineralization of bacterial surfaces Chemical Geology 132 171181 10.1016/S0009-2541(96)00053-8.CrossRefGoogle Scholar
Schultze-Lam, S. Harauz, G. and Beveridge, T. J., 1992 Participation of a cyanobacterial S-layer in fine-grain mineral formation Journal of Bacteriology 174 79717981 10.1128/jb.174.24.7971-7981.1992.CrossRefGoogle ScholarPubMed
Singer, A. and Stoffers, P., 1987 Mineralogy of a hydrothermal sequence in a core from the Atlantis II Deep, Red Sea Clay Minerals 22 251267 10.1180/claymin.1987.022.3.01.CrossRefGoogle Scholar
Singer, A. Stoffers, P. Hellar-Kallai, L. and Szafranek, D., 1984 Nontronite in a deep sea core from South Pacific Clays and Clay Minerals 32 375383 10.1346/CCMN.1984.0320505.CrossRefGoogle Scholar
Sleytr, U. B. and Beveridge, T. J., 1999 Bacterial S-layers Trends in Microbiology 7 253259 10.1016/S0966-842X(99)01513-9.CrossRefGoogle ScholarPubMed
Tashiro, Y. and Tazaki, K., 1999 The primitive stage of microbial mats comprising iron hydroxides Earth Science 53 2735.Google Scholar
Tazaki, K., 1997 Biomineralization of layer silicates and hy-drated Fe/Mn oxides in microbial mats: An electron microscopical study Clays and Clay Minerals 45 203212 10.1346/CCMN.1997.0450208.CrossRefGoogle Scholar
Tazaki, K., 1999 Architecture of biomats reveals history of geo-, aqua-, and bio-systems Episodes 22 2125.CrossRefGoogle Scholar
Theng, B K G Orchard, V. A., Huang, P. M. Berthelin, J. Bollag, J -M McGill, W. B. and Page, A. L., 1995 Interactions of clays with microorganisms and bacterial survival in soil: a phys-icochemical perspective Environmental Impact of Soil Component Interactions-Metals, other Inorganics, and Microbial Activities, Volume II 123143.CrossRefGoogle Scholar
Ueshima, M. and Tazaki, K., 1998 Bacterial bioweathering of K-feldspar and biotite in granite Journal of the Clay Science Society of Japan 38 6882.Google Scholar
Urrutia, M. M. and Beveridge, T. J., 1993 Mechanism of silicate binding to the bacterial cell wall in Bacillus subtilis Journal of Bacteriology 175 19361945 10.1128/jb.175.7.1936-1945.1993.Google Scholar
Urrutia, M. M. and Beveridge, T. J., 1994 Formation of finegrained metal and silicate precipitates on a bacterial surface (Bacillus subtilis) Chemical Geology 116 261280 10.1016/0009-2541(94)90018-3.CrossRefGoogle Scholar
Urrutia, M. M. and Beveridge, T. J., 1995 Formation of short-range ordered aluminosilicates in the presence of a bacterial surface (Bacillus subtilis) and organic ligands Geoderma 65 149165 10.1016/0016-7061(94)00037-B.CrossRefGoogle Scholar
Uyeda, S., 1987 Active hydrothermal mounds in the Okinawa back-arc trough EOS, Transactions American Geophysical Union 68 737 10.1029/EO068i036p00737-01.CrossRefGoogle Scholar
Welch, S. A. Barker, W. W. and Banfield, J. F., 1999 Microbial extracellular polysaccharides and plagioclase dissolution Geochimica et Cosmochimica Acta 63 14051419 10.1016/S0016-7037(99)00031-9.CrossRefGoogle Scholar