Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T23:59:01.922Z Has data issue: false hasContentIssue false

Polymer Model of Zeolite Thermochemical Stability

Published online by Cambridge University Press:  01 January 2024

Randolph Arthur*
Affiliation:
INTERA, Inc., 3900 S. Wadsworth Blvd., Suite 555, Denver, Colorado, 80235, USA
Hiroshi Sasamoto
Affiliation:
Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki-ken 319-1194, Japan
Colin Walker
Affiliation:
Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki-ken 319-1194, Japan
Mikazu Yui
Affiliation:
Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki-ken 319-1194, Japan
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The polymer model provides a relatively simple and robust basis for estimating the standard Gibbs free energies of formation (ΔGfo) and standard enthalpies of formation (ΔHfo) of clay minerals and other aluminosilicates with an accuracy that is comparable to or better than can be obtained using alternative techniques. The model developed in the present study for zeolites entailed the selection of internally consistent standard thermodynamic properties for model components, calibration of adjustable model parameters using a linear regression technique constrained by ΔGfo and ΔHfo values retrieved from calorimetric, solubility, and phase-equilibrium experiments, and assessments of model accuracy based on comparisons of predicted values with experimental counterparts not included in the calibration dataset. The ΔGfo and ΔHfo predictions were found to average within ±0.2% and ±0.3%, respectively, of experimental values at 298.15 K and 1 bar. The latter result is comparable to the good accuracy that has been obtained by others using a more rigorous electronegativity-based model for ΔHfo that accounts explicitly for differences in zeolite structure based on differences in framework density and unit-cell volume. This observation is consistent with recent calorimetric studies indicating that enthalpies of transition from quartz to various pure-silica zeolite frameworks (zeosils) are small and only weakly dependent on framework type, and suggests that the effects on ΔHfo of differences in framework topology can be ignored for estimation purposes without incurring a significant loss of accuracy. The relative simplicity of the polymer model, together with its applicability to both zeolites and clay minerals, is based on a common set of experimentally determined and internally consistent thermodynamic properties for model components. These attributes are particularly well suited for studies of the effects of water-rock-barrier interactions on the long-term safety of geologic repositories for high-level nuclear waste (HLW).

Type
Article
Copyright
Copyright © Clay Minerals Society 2011

References

Armbruster, T. and Gunter, M.E., 2001 Crystal structure of natural zeolites Natural Zeolites: Occurrence, Properties, Applications 45 167.Google Scholar
Arthur, R.C. Sasamoto, H. Shibata, M. Yui, M. and Neyama, A., 1999 Development of thermodynamic databases for geochemical calculations JNC TN8400 99–079 Tokai-mura, Ibaraki, Japan Japan Nuclear Cycle Development Institute.Google Scholar
Benning, L.G. Wilkin, R.T. and Barnes, H.L., 2000 Solubility and stability of zeolites in aqueous solution: II Calcic clinoptilolite and mordenite. American Mineralogist 85 495508.CrossRefGoogle Scholar
Chen, C.H., 1975 A method of estimation of standard free energies of formation of silicate minerals at 298.15°K American Journal of Science 275 801817.CrossRefGoogle Scholar
Chermak, J.A. and Rimstidt, J.D., 1989 Estimating the thermodynamic properties (ΔG f0 and ΔH f0) of silicate minerals at 298 K from the sum of polyhedral contributions American Mineralogist 74 10231031.Google Scholar
Chipera, S.J. and Apps, J.A., 2001 Geochemical stability of natural zeolites Natural Zeolites: Occurrence, Properties, Applications 45 117161.CrossRefGoogle Scholar
Cho, M. Maruyama, S. and Liou, J.G., 1987 An experimental investigation of heulandite-laumontite equilibrium at 1000 to 2000 bar Pfluid Contributions to Mineralogy and Petrology 97 4350.CrossRefGoogle Scholar
Donahoe, R.J. Liou, J.G. and Hemingway, B.S., 1990 Thermochemical data for merlinoite: 2. Free energies of formation at 298.15 K of six synthetic samples having various Si/Al and Na/(Na + K) ratios and application to saline, alkaline lakes American Mineralogist 75 201208.Google Scholar
Donahoe, R.J. Hemingway, B.S. and Liou, J.G., 1990 Thermochemical data for merlinoite: 1. Low-temperature heat capacities, entropies, and enthalpies of formation at 298.15 K of six synthetic samples having various Si/Al and Na/(Na + K) ratios American Mineralogist 75 188200.Google Scholar
Fridriksson, T. Neuhoff, P.S. Arnórsson, S. and Bird, D.K., 2001 Geological constraints on the thermodynamic properties of the stilbite-stellerite solid solution in low-grade metabasalts Geochimica et Cosmochimica Acta 65 39934008.CrossRefGoogle Scholar
Gunnarsson, I. and Arnórsson, S., 2000 Amorphous silica solubility and the thermodynamic properties of H4SiO40 in the range of 0° to 350°C at Psat Geochimica et Cosmochimica Acta 64 22952307.CrossRefGoogle Scholar
Helgeson, H.C. Delany, J.M. Nesbitt, H.W. and Bird, D.K., 1978 Summary and critique of the thermodynamic properties of rock-forming minerals American Journal of Science 278-A 1229.Google Scholar
Howell, D.A. Johnson, G.K. Tasker, I.R. O’Hare, P.A.G. and Wise, W.S., 1990 Thermodynamic properties of the zeolite stilbite Zeolites 10 525531.CrossRefGoogle Scholar
Johnson, G.K. Flotow, H.E. O’Hare, P.A.G. and Wise, W.S., 1982 Thermodynamic studies of zeolites: analcime and dehydrated analcime American Mineralogist 67 736748.Google Scholar
Johnson, G.K. Flotow, H.E. O’Hare, P.A.G. and Wise, W.S., 1983 Thermodynamic studies of zeolites: natrolite, mesolite, and scolecite American Mineralogist 68 11341145.Google Scholar
Johnson, G.K. Flotow, H.E. O’Hare, P.A.G. and Wise, W.S., 1985 Thermodynamic studies of zeolites: heulandite American Mineralogist 70 10651071.Google Scholar
Johnson, G.K. Tasker, I.R. Howell, D.A. and Smith, J.V., 1987 Thermodynamic properties of silicalite SiO2 Journal of Chemical Thermodynamics 19 617632.CrossRefGoogle Scholar
Johnson, G.K. Tasker, I.R. Flotow, H.E. O’Hare, P.A.G. and Wise, W.S., 1992 Thermodynamic studies of mordenite, dehydrated mordenite, and gibbsite American Mineralogist 77 8593.Google Scholar
Johnson, J.W. Oelkers, E.H. and Helgeson, H.C., 1992 SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bars and 0°C to 1000°C Computers and Geosciences 18 899947.CrossRefGoogle Scholar
Jones, B.F. Rettig, S.L. and Eugster, H.P., 1967 Silica in alkaline brines Science 158 13101314.CrossRefGoogle ScholarPubMed
Kiseleva, I. Navrotsky, A. Belitsky, I.A. and Fursenko, B.A., 1996 Thermochemistry and phase equilibria in calcium zeolites American Mineralogist 81 658667.CrossRefGoogle Scholar
Kiseleva, I. Navrotsky, A. Belitsky, I.A. and Fursenko, B.A., 1996 Thermochemistry of natural potassium sodium calcium leonhardite and its cation-exchanged forms American Mineralogist 81 668675.CrossRefGoogle Scholar
Kiseleva, I.A. Ogorodova, L.P. Mel’chakova, L.V. Belitsky, I.A. and Fursenko, B.A., 1997 Thermochemical investigation of natural fibrous zeolites European Journal of Mineralogy 9 327332.CrossRefGoogle Scholar
Kiseleva, I.A. Ogorodova, L.P. Mel’chakova, L.V. Belitskii, I.A. and Fursenko, B.A., 1998 Thermodynamic characteristics of thomsonite and edingtonite Vestnik Moskovskogo Universiteta Seria 4 Geologija 3 2732.Google Scholar
Kiseleva, I. Navrotsky, A. Belitsky, I. and Fursenko, B., 2001 Thermochemical study of calcium zeolites — heulandite and stilbite American Mineralogist 86 448455.CrossRefGoogle Scholar
Kiseleva, I.A. Navrotsky, A. Belitsky, I.A. and Fursenko, B.A., 2001 Thermodynamic properties of the calcium zeolites stilbite and stellerite Geochemistry International 39 170176.Google Scholar
La Iglesia, A. and Aznar, A.J., 1986 A method of estimating the Gibbs energies of formation of zeolites Zeolites 6 2629.CrossRefGoogle Scholar
Mathieu, R. and Vieillard, P., 2010 A predictive model for the enthalpies of formation of zeolites Microporous and Mesoporous Materials 132 335351.CrossRefGoogle Scholar
Mattigod, S.V. and McGrail, B.P., 1999 Estimating the standard free energy of formation of zeolites using the polymer model Microporous and Mesoporous Materials 27 4147.CrossRefGoogle Scholar
Mattigod, S.V. and Sposito, G., 1978 Improved method for estimating the standard free energies of formation (ΔG f,298.15) of smectites Geochimica et Cosmochimica Acta 42 17531762.CrossRefGoogle Scholar
Mel’chakova, L.V. Ogorodova, L.P. Kiseleva, I.A. Belitskii, I.A. and Fursenko, B.A., 1999 Thermochemical investigations of natural bikitaite Geochemistry International 37 12241227.Google Scholar
Mel’chakova, L.V. Ogorodova, L.P. Kiseleva, I.A. and Belitskii, I.A., 2004 Thermodynamic properties of ferrierite-mordenite-group natural zeolite Zhurnal Fizicheskoi Khimii 78 23002301.Google Scholar
Moloy, E.C. Davila, L.P. Shackelford, J.F. and Navrotsky, A., 2002 High-silica zeolites: a relationship between energetics and internal surface area Microporous and Mesoporous Materials 54 113.CrossRefGoogle Scholar
Murphy, W.M. Pabalan, R.T. Prikryl, J.D. and Goulet, C.J., 1996 Reaction kinetics and thermodynamics of aqueous dissolution and growth of analcime and Na-clinoptilolite at 25°C American Journal of Science 296 128186.CrossRefGoogle Scholar
Navrotsky, A., 1997 Issues in the energetics of metastable oxides and oxyhydroxides Aqueous Chemistry and Geochemistry of Oxides, Oxyhydroxides and Related Materials 432 314.Google Scholar
Neuhoff, P.S. Hovis, G.L. Balassone, G. and Stebbins, J.F., 2004 Thermodynamic properties of analcime solid solutions American Journal of Science 304 2166.CrossRefGoogle Scholar
Nordstrom, D.L. Plummer, L.N. Langmuir, D. Busenberg, E. May, H.M. Jones, B.F. and Parkhurst, D.L., 1990 Revised chemical equilibrium data for major water-mineral reactions and their limitations Chemical Modeling of Aqueous Systems II 416 398413.CrossRefGoogle Scholar
Nriagu, J.O., 1975 Thermochemical approximations for clay minerals American Mineralogist 60 834839.Google Scholar
Oda, C. Honda, A. Savage, D., Metcalfe, R. and Walker, C., 2004 An analysis of cement-bentonite interaction and evolution of pore water chemistry Proceedings of the International Workshop on Bentonite-Cement Interactions in Repository Environments Tokyo Nuclear Waste Management Organization of Japan 7379.Google Scholar
Ogorodova, L.P. Kiseleva, I.A. Mel’chakova, L.V. Belitskii, I.A. and Fursenko, B., 1996 Enthalpies of formation and dehydration of natur a l analcime Geochemistry International 34 980984.Google Scholar
Ogorodova, L.P. Mel’chakova, L.V. Kiseleva, I.A. Belitskii, I.A. and Fursenko, B.A., 2000 Thermodynamic characteristics of mordenite group zeolite: epistilbite Vestnik Moskovskogo Universiteta Seria 4 Geologija 55 6164.Google Scholar
Ogorodova, L.P. Mel’chakova, L.V. Kiseleva, I.A. and Belitskii, I.A., 2001 Thermodynamic properties of natural erionite from calorimetric data Vestnik Moskovskogo Universiteta Seria 4 Geologija 56 5659.Google Scholar
Ogorodova, L.P. Kiseleva, I.A. Mel’chakova, L.V. and Belitskii, I.A., 2002 Thermodynamic properties of calcium and potassium chabazites Geochemistry International 40 466471.Google Scholar
Ogorodova, L.P. Mel’chakova, L.V. Kiseleva, I.A. and Belitskii, I.A., 2002 Calorimetric investigation of the natural gmelinite Vestnik Moskovskogo Universiteta Seria 4 Geologija 57 7173.Google Scholar
Ogorodova, L.P. Mel’chakova, L. Kiseleva, I.A. and Belitskii, I.A., 2003 Thermodynamic properties of natural zeolites of the gismondine–harronite group Russian Journal of Physical Chemistry 77 15431545.Google Scholar
Ogorodova, L.P. Mel’chakova, L.V. Kiseleva, I.A. and Belitskii, I.A., 2005 Thermodynamic characteristics of natural brewsterite Geochemistry International 43 721723.Google Scholar
Ogorodova, L.P. Mel’chakova, L.V. and Kiseleva, I.A., 2007 A study of dachiardite, a natural zeolite of the mordenite group Russian Journal of Physical Chemistry 81 17481750.CrossRefGoogle Scholar
Passaglia, E. and Sheppard, R.A., 2001 The crystal chemistry of zeolites Natural Zeolites: Occurrence, Properties, Applications 45 69116.CrossRefGoogle Scholar
Patarin, J. Soulard, M. Kessler, H. Guth, J.L. and Diot, M., 1989 Enthalpies standard de formation d’echantillons zéolithiques de type MFI. Stabilisation de cette structure par les cations tetra-, tri at dipropylammonium Thermochimica Acta 146 2138.CrossRefGoogle Scholar
Petrova, N., 1997 Enthalpy of formation of chabazite, heulandite and clinoptilolite Comptes rendus de l’Académie Bulgare des Sciences 50 6972.Google Scholar
Petrovic, I. Navrotsky, A. Davis, M.E. and Zones, S.I., 1993 Thermochemical study of the stability of frameworks in high silica zeolites Chemistry of Materials 5 18051813.CrossRefGoogle Scholar
Piccione, P.M. Laberty, C. Yang, S. Camblor, M.A. Navrotsky, A. and Davis, M.E., 2000 Thermochemistry of pure-silica zeolites Journal of Physical Chemistry B 104 1000110011.CrossRefGoogle Scholar
Pfingsten, W. and Shiotsuki, M., 1998 Modeling a cement degradation experiment by a hydraulic transport and chemical equilibrium coupled code Scientific Basis for Nuclear Waste Management XXI 506 805812.Google Scholar
Redkin, A.F. and Hemley, J.J., 2000 Experimental Cs and Sr sorption on analcime in rock-buffered systems at 250–300°C and Psat and the thermodynamic evaluation of mineral solubilities and phase relations European Journal of Mineralogy 12 9991014.CrossRefGoogle Scholar
Richet, P. Bottinga, Y. Denielou, L. Petitet, J. and Tequi, C., 1982 Thermodynamic properties of quartz, cristobalite and amorphous SiO2: Drop calorimetry measurements between 1000 and 1800 K and a review from 0–2000 K Geochimica et Cosmochimica Acta 46 26392658.CrossRefGoogle Scholar
Rimstidt, J.D., 1997 Quartz solubility at low temperatures Geochimica et Cosmochimica Acta 61 25532558.CrossRefGoogle Scholar
Robie, R.A., Hemingway, B.S., and Fisher, J.R. (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar pressure and at higher temperatures. U.S. Geological Survey Bulletin, 1452.Google Scholar
Savage, D. Noy, D. and Mihara, M., 2002 Modeling the interaction of bentonite with hyperalkaline fluids Applied Geochemistry 17 207223.CrossRefGoogle Scholar
Savage, D. Walker, C. Arthur, R. Rochelle, C. Oda, C. and Takase, H., 2007 Alteration of bentonite by hyperalkaline fluids: A review of the role of secondary minerals Physics and Chemistry of the Earth 32 287297.CrossRefGoogle Scholar
Shim, S.-H. Navrotsky, A. Gaffney, T.R. and MacDougall, J.E., 1999 Chabazite: Energetics of hydration, enthalpy of formation, and effect of cations on stability American Mineralogist 84 18701882.CrossRefGoogle Scholar
Shannon, R.D., 1976 Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallographica Section A 32 751767.CrossRefGoogle Scholar
SKB, 2011 Long-term safety for the final repository for spent nuclear fuel at Forsmark SKB TR-11-01 Stockholm, Sweden Swedish Nuclear Fuel and Waste Management Co..Google Scholar
Slaughter, M., 1966 Chemical binding in silicate minerals — II. Computational methods and approximations for the binding energy of complex silicates Geochimica et Cosmochimica Acta 30 315322.CrossRefGoogle Scholar
Sposito, G., Drever, J.I. and Reidel, D., 1985 Chemical models of weathering in soils Chemistry of Weathering The Netherlands Dordrecht 118.Google Scholar
Sposito, G., 1986 The polymer model of thermochemical clay mineral stability Clays and Clay Minerals 34 198203.CrossRefGoogle Scholar
Stull, D.R. and Prophet, H., 1971 JANAF Thermochemical Tables NSRDS-NBS 37 Washington D.C. U.S. Department of Commerce, National Bureau of Standards.Google Scholar
Tardy, Y. and Garrels, R.M., 1974 A method of estimating the Gibbs energies of formation of layer silicates Geochimica et Cosmochimica Acta 38 11011116.CrossRefGoogle Scholar
Tardy, Y. and Garrels, R.M., 1976 Prediction of Gibbs energies of formation — I. Relationships among Gibbs energies of formation of hydroxides, oxides and aqueous ions Geochimica et Cosmochimica Act 40 10511056.CrossRefGoogle Scholar
Turner, S. Sieber, J.R. Vetter, T.W. Zeisler, R. Marlow, A.F. Moreno-Ramirez, M.G. Davis, M.E. Kennedy, G.J. Borghard, W.G. Yang, S. Navrotsky, A. Toby, B.H. Kelly, J.F. Fletcher, R.A. Windsor, E.S. Verkouteren, J.R. and Leigh, S.D., 2008 Characterization of chemical properties, unit cell parameters and particle size distribution of three zeolite reference materials: RM 8850 — zeolite Y, RM 8851 — zeolite A and RM 8852 — ammonium ZSM-5 zeolite Microporous and Mesoporous Materials 107 252267.CrossRefGoogle Scholar
Vieillard, P., 2010 A predictive model for the entropies and heat capacities of zeolites European Journal of Mineralogy 22 823836.CrossRefGoogle Scholar
Vieillard, P. and Mathieu, R., 2009 A predictive model for the enthalpies of hydration of zeolites American Mineralogist 94 565577.CrossRefGoogle Scholar
1982 Journal of Physical and Chemical Reference Data 11 Supplement2.Google Scholar
Wilkin, R.T. and Barnes, H.L., 1998 Solubility and stability of zeolites in aqueous solution: I. Analcime, Na-, and Kclinoptilolite American Mineralogist 83 746761.CrossRefGoogle Scholar
Yang, S. Navrotsky, A. and Wilkin, R., 2001 Thermodynamics of ion-exchanged and natural clinoptilolite American Mineralogist 86 438447.CrossRefGoogle Scholar
Yui, M. Azuma, J. and Shibata, M., 1999 JNC thermodynamic database for performance assessment of high-level radioactive wastes disposal system JNC TN8400 99–070 Tokai-mura, Japan Japan Nuclear Cycle Development Institute.Google Scholar
Yui, M. Sasamoto, H. and Arthur, R., 2004 Geostatistical and geochemical classification of groundwaters considered in safety assessment of a deep geologic repository for highlevel radioactive wastes in Japan Geochemical Journal 38 3342.CrossRefGoogle Scholar
Zeng, Y. and Liou, J.G., 1982 Experimental investigation of yugawaralite-wairakite equilibrium American Mineralogist 67 937943.Google Scholar