Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T02:28:28.420Z Has data issue: false hasContentIssue false

Pillaring Processes of Smectites with and Without Tetrahedral Substitution

Published online by Cambridge University Press:  02 April 2024

D. Plee
Affiliation:
Centre de Recherche sur les Solides à Organisation Cristalline Imparfaite, C.N.R.S., 1B rue de la Férollerie, 45071 Orléans Cédex 2, France
L. Gatineau
Affiliation:
Centre de Recherche sur les Solides à Organisation Cristalline Imparfaite, C.N.R.S., 1B rue de la Férollerie, 45071 Orléans Cédex 2, France
J. J. Fripiat
Affiliation:
Centre de Recherche sur les Solides à Organisation Cristalline Imparfaite, C.N.R.S., 1B rue de la Férollerie, 45071 Orléans Cédex 2, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Pillaring of montmorillonite and beidellite with aluminum polyhydroxypolymer takes place first by the saturation of the cation-exchange capacity by monomeric and/or dimeric aluminum hydroxide species and then the intercalation of the so-called Al13-polyhydroxypolymer. The clay slurry must have a solid concentration greater than 0.01% (w/w) to produce a basal spacing of about 18 Å. Sizeable clay tactoids must therefore exist in the slurry in order to produce a turbostratic structure ordered along the c axis. The main difference between pillared montmorillonite and pillared beidellite seems to be a more ordered distribution of pillars within the interlamellar space of the clays that are rich in tetrahedral substitutions. Recent 27Al and 21Si high-resolution nuclear magnetic resonance data suggest that this higher degree of ordering results from the reaction of the aluminic pillars and the clay sheet near the sites of the tetrahedral substitutions.

Type
Research Article
Copyright
Copyright © 1987, The Clay Minerals Society

References

Axelos, M., Tchoubar, D., Bottero, J. Y. and Fiessinger, F., 1985 Determination par DPAX de la structure fractale d’agregats obtenus par collage d’amas. Étude de deux solutions d’hydroxyde d’aluminium Al(OH)x avec x = 2.5 J. Physique 46 15871593.CrossRefGoogle Scholar
Bamhisel, R. I., Dixon, J. B. and Weed, S. B., 1977 Chlorites and hydroxy-interlayered vermiculite and smectite Minerals in Soil Environments Wisconsin Soil Science Society of America, Madison 331356.Google Scholar
Bottero, J. Y., Cases, J. M., Fiessinger, F. and Poirier, J. E., 1980 Studies of hydrolyzed aluminium chloride solutions. I. Nature of aluminium species and composition of aqueous solutions J. Phys. Chem. 84 29332939.CrossRefGoogle Scholar
Bottero, J. Y., Partyka, S. and Fiessinger, F., 1982 Differential calorimetry study of the polymer Al13O4(OH)28(H2O)8 7+ and of amorphous aluminum trihydroxide gel in aqueous solution Thermochimica Acta 59 221229.CrossRefGoogle Scholar
Bottero, J. Y., Tchoubar, D., Cases, J. M. and Fiessinger, F., 1982 Investigation of the hydrolysis of aqueous solution of aluminum chloride. 2. Nature and structure by small- angle X-ray scattering J. Phys. Chem. 86 36673673.CrossRefGoogle Scholar
Brindley, G. W. and Sempels, R. E., 1977 Preparation and properties of some hydroxy-aluminum beidellites Clay Miner. 12 229237.CrossRefGoogle Scholar
Chourabi, B. and Fripiat, J. J., 1981 Determination of tetrahedral substitutions and interlayer surface heterogeneity from vibrational spectra of ammonium in smectites Clays & Clay Minerals 29 260268.CrossRefGoogle Scholar
Frank-Kamenetskiy, V. A., Kotov, N. V. and Tomzdhenko, A. N., 1973 The roles of AlIV (tetrahedral) and AlVI (octahedral) in layer silicates synthesis and alteration Geokhimiya 8 11531162.Google Scholar
Fripiat, J., Chaussidon, J. and Jelli, A., 1971 Chimie-Physique des Phénomènes de Surface Paris Masson.Google Scholar
Fripiat, J. J., Cases, J. M., François, M. and Letellier, M., 1982 Thermodynamic and microdynamic behavior of water in clay suspensions and gels J. Colloid Interface Sci. 89 378400.CrossRefGoogle Scholar
Gastuche, M. C. and Flerbillon, A., 1962 Étude des gels d’alumine: Cristallisation en milieu désionisé Bull. Soc. Chim. France 14041412.Google Scholar
Jacobs, P., Poncelet, G. and Schutz, A. (1981) Procédé de préparation d’argiles pontées. Argiles préparées par ce procédé et applications des dites argiles: European Patent Request 0073–718.Google Scholar
Luth, W. C. and Ingamells, C. O., 1965 Gel preparation of starting materials for hydrothermal experimentation Clays & Clay Minerals 25 215227.Google Scholar
Pinnavaia, T. J., 1983 Intercalated clay catalysts Science 220 365371.CrossRefGoogle ScholarPubMed
Plee, D., Borg, F., Gatineau, L. and Fripiat, J. J., 1985 High resolution solid state 27Al and 29Si nuclear magnetic resonance study of pillared clays J. Amer. Chem. Soc. 107 23622369.CrossRefGoogle Scholar
Raush, W. I. and Bale, H. D., 1964 Small-angle X-ray scattering from hydrolyzed aluminum nitrate solutions J. Chem. Phys. 40 33913397.CrossRefGoogle Scholar
Vaughan, D. E. W. Lussier, R. J. and Rees, L. V. C., 1980 Preparation of molecular sieves based on pillared interlayered clays Proc. 5th International Conference on Zeolites, Naples, 1980 London Heyden 94101.Google Scholar