Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T03:15:22.623Z Has data issue: false hasContentIssue false

Palygorskite and Sepiolite Alteration to Smectite under Alkaline Conditions

Published online by Cambridge University Press:  02 April 2024

D. C. Golden
Affiliation:
Soil and Crop Science Department, Texas A&M University, College Station, Texas 77843
J. B. Dixon
Affiliation:
Soil and Crop Science Department, Texas A&M University, College Station, Texas 77843
H. Shadfan*
Affiliation:
Soil and Crop Science Department, Texas A&M University, College Station, Texas 77843
L. A. Kippenberger
Affiliation:
Soil and Crop Science Department, Texas A&M University, College Station, Texas 77843
*
1Present address: Department of Soil Science, King Saud University, Riyadh, Saudi Arabia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The instability of palygorskite and sepiolite under soil conditions was investigated to determine if these fibrous minerals transform directly to smectite under laboratory conditions. The treatment of 100 mg (0.12 mmole) of palygorskite with 1 mmole of NaOH solution (17 ml) at 150°C for 24 hr yielded a smectite. Analcime and smectite were formed when ≥ 3 mmole of NaOH was used. The addition of ≤ 6 mmole NaOH to sepiolite destroyed it gradually. On addition of ≥ 8 mmole NaOH, sepiolite altered to an X-ray amorphous material. In the presence of Al and Si, however, it transformed to smectite and analcime. Transmission electron microscopy, cation-exchange capacity, and X-ray powder diffraction studies of the products suggest that alteration wa. (1) via solution, o. (2) by a structural reorganization wherein the basic 2:1 silicate structural units were unchanged.

Резюме

Резюме

Исследовалась нестабильность палыгорскита и сепиолита в почвенных условиях для определения возможности прямой трансформации этих волоконных минералов в смектит в лабораторных условиях. Смектит являлся результатом обработки 100 мг (0,12 ммоля) палыгорскита 1 ммолем раствора NaOH (17 мл) в температуре 150°С через 24 часа. Анальцим и смектит формировались когда использовалось ≥ 3 ммоля NaOH. Добавление ≤ 6 ммолей NaOH к сепиолиту разрушало этот минерал постепенно. При добавлении ≥ 8 ммолей NaOH, сепиолит изменялся в аморфический (по рентгеновскому анализу) материал. Однако, в присутствии Al и Si, сепиолит изменялся в смектит и анальцим. Исследования путем электронной трансмиссионной микроскопии, катионо-обменной способности и порошковой рентгеновской дифракции этих продуктов указывают на то, что трансформация происходила (1) через раствор, или (2) путем структурной перестройки, во время которой основные структурные единицы 2:1 силикатов не изменялись. [E.G.]

Resümee

Resümee

Die Instabilität von Palygorskit und Sepiolith unter Bodenbedingungen wurde untersucht, um festzustellen, ob diese faserigen Minerale sich unter Laborbedingungen direkt in Smektit umwandeln. Die Umwandlung von 100 mg (0,12 mMol) von Palygorskit mit 1 mMol NaOH-Lösung (17 ml) bei 150°C über 24 Stunden ergab einen Smektit. Analcim und Smektit wurden gebildet, wenn ≥ 3mMol NaOH verwendet werden. Die Zugabe von ≤ 6 mMol NaOH zu Sepiolith zerstörte ihn allmählich. Bei der Zugabe von ≥ 8 mMol NaOH wandelte sich Sepiolith in ein röntgenamorphes Material um. Bei der Anwesenheit von Al und Si wandelte sich Sepiolith jedoch in Smektit und Analcim um. Transmissionselektronenmikroskopische, Kationenaustauschkapazitäts- und Röntgenpulverdiffraktometeruntersuchungen der Umwandlungsprodukte deuten darauf hin, daß die Umwandlun. (1) über die Lösung ode. (2) durch eine strukturelle Umordnung vorsieh ging, wobei die grundlegenden 2:1 Silikatstruktureinheiten unverändert blieben. [U.W.]

Résumé

Résumé

L'instabilité de la palygorskite et de la sépiolite sous des conditions de sol a été investiguée pour déterminer si ces minéraux fibreux se transformaient directement en smectite sous des conditions de laboratoire. Le traitement de 100 mg (0,12 mmole) de palygorskite avec 1 mmole de solution de NaOH (1,7 ml) à 150°C pendant 24 hr a produit une smectite. L'analcime et la smectite ont été formées lorsque ≥ 3mmole de NaOH ont été utilisées. L'addition de ≤ 6 mmole de NaOH à la sepiolite l'a petit à petit détruite. Lorsqu'on a ajouté ≥ 8 mmole de NaOH, la sépiolite s'est changée en un matériau amorphe aux rayons-X. En la présence d'Al et de Si, cependant, elle s'est transformée en smectite et en analcime. La microscopie à transmission d’électrons, la capacité d’échange de cations, et des études de diffraction des rayons-X de ces produits suggèrent que l'altération s'est produit. (1) via une solution o. (2) par une réorganisation structurale dans laquelle les unites silicates de structure de base 2:1 n'ont pas changé. [D.J.]

Type
Research Article
Copyright
Copyright © 1985, The Clay Minerals Society

References

Baldar, N. A. and Whittig, L. D., 1968 Occurrence and synthesis of soil zeolites Soil Sci. Soc. Amer. Proc 32 235238.CrossRefGoogle Scholar
Bernas, B., 1968 A new method for decomposition and comprehensive analysis of silicates by atomic absorption spectrometry Anal. Chem 40 16821686.CrossRefGoogle Scholar
Bigham, J. M., Jaynes, W. F. and Allen, B. L., 1980 Pedogenic degradation of sepiolite and palygorskite on the Texas high plains Soil Sci. Soc. Amer. J 44 159167.CrossRefGoogle Scholar
Elprince, A. M., Mashhady, A. S. and Aba-Husayn, M. M., 1979 The occurrence of pedogenic palygorskite (attapulgite) in Saudi Arabia Soil Sci 128 211218.CrossRefGoogle Scholar
Güven, N. and Carney, L. L., 1979 The hydrothermal transformation of sepiolite to stevensite and the effect of added chlorides and hydroxides Clays & Clay Minerals 27 253260.CrossRefGoogle Scholar
Heller-Kallai, L. and Rozenson, I., 1981 Mössbauer studies of palygorskite and some aspects of palygorskite mineralogy Clays & Clay Minerals 29 226231.CrossRefGoogle Scholar
Isphording, W. C., 1973 Discussion of the occurrence and origin of sedimentary palygorskite-sepiolite deposits Clays & Clay Minerals 21 391401.CrossRefGoogle Scholar
Jackson, M. L., 1956 Soil Chemical Analysis—Advanced Course 127141.Google Scholar
Lagaly, G., Weiss, A. and Bailey, S. W., 1976 The layer charge of smectite layer silicates Proc. Int. Clay. Conf., Mexico City, 1975 157172.Google Scholar
Lee, R. W. and Güven, N., 1975 Chemical interferences in atomic absorption spectrometric analysis of silicates in the fluoboric-boric acids matrix Chem. Geol 16 5358.CrossRefGoogle Scholar
Lee, S. Y., Dixon, J. B. and Aba-Husayn, M. M., 1983 Mineralogy of Saudi Arabian soils: Eastern Region Soil Sci. Soc. Amer. J 47 321326.CrossRefGoogle Scholar
Mumpton, F. A. and Roy, R., 1956 New data on sepiolite and attapulgite Clays and Clay Minerals, Proc. 5th Natl. Conf., Urbana, Illinois, 1955 566 136143.Google Scholar
Ruehlicke, G. and Kohler, E. E., 1981 A simplified procedure for determining layer charge by the n-alkylammonium method Clay Miner 16 305307.CrossRefGoogle Scholar
Serna, C., Scoyoc, G. E. and Ahlrichs, J. L., 1977 Hydroxyl groups and water in palygorskite Amer. Mineral 62 784792.Google Scholar
Weaver, R. M., Syers, J. K. and Jackson, M. L., 1968 Determination of silica in citrate, bicarbonate, dithionite extracts of soils Soil Sci. Soc. Amer. Proc 32 497501.CrossRefGoogle Scholar