Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-29T13:38:32.609Z Has data issue: false hasContentIssue false

Origin of Iron-Rich Montmorillonite from the Manganese Nodule Belt of the North Equatorial Pacific

Published online by Cambridge University Press:  01 July 2024

James R. Hein
Affiliation:
U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025
Hsueh-Wen Yeh
Affiliation:
Hawaii Institute of Geophysics, University of Hawaii, Honolulu, Hawaii 96822
Elaine Alexander
Affiliation:
U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Clay minerals in the upper 50 cm of sediment that surround the Cu- and Ni-rich manganese nodules in the North Equatorial Pacific form two fractions: terrigenous (mostly eolian) illite, chlorite, and kaolinite, and authigenic smectite. Smectite increases with depth in box cores from 26 to 39% and from 53 to 66% in the easternmost and westernmost areas respectively, and with distance seaward from the Americas from 26 to 53% in surface deposits. The change in the amount of smectite relative to other clay minerals is due to dilution by terrigenous debris; smectite probably forms at a uniform rate over much of the North Pacific deep-sea floor. The δO18 value for the smectite is +29.6‰ which suggests that it formed authigenically at a temperature characteristic of the deep-sea floor. The smectite is an Fe-rich montmorillonite that probably forms by the low-temperature chemical combination of Fe hydroxides and silica. Silica is derived from dissolution of biogenic debris, and the Fe hydroxide is from volcanic activity at the East Pacific Rise, 4000 to 5000 km to the east. Al in the authigenic montmorillonite may be derived from the dissolution of large amounts of biogenic silica or from river-derived Al that is adsorbed on Fe-Mn hydroxides in the oceans. The Fe-montmorillonite contains relatively abundant Cu, Zn, and Mn and is of possible economic importance as a source of these and other metals.

Резюме

Резюме

Глинистые минералы в верхней 50 см части осадков, вмещающих богатые Си и Ni марганцевые конкреции в северной экваториальной части Тихого океана подразделяются на две фракции: терригенные (в основном эоловые) иллит, хлорит и каолинит и аутигенный смектит. Содержание смектита увеличивается с глубиной в коробчатых кернах от 26 до 39% и от 53 до 66% соответственно в самой восточной и самой западной зонах и с удалением от Американских континентов в сторону океана от 26 до 53% в поверхностных отложениях. Изменение содержания смектита по отношению к другим минералам обязано разубоживанию терригенными осадками. Смектит возможно образуется равномерно на большей северной части Тихоокеанского глубоководного дна. Значение δO18 для смектита +29,6‰, что предполагает его образование аутигенитически прн температуре, характерной для глубоководного дна. Смектит представляет собой богатый Fe монтмориллонит, который возможно образуется из низкотемпературных химических соединений гидроокислов Fe и кремнезема. Кремнезем выделяется в результате растворения биогенетических осадков, а гидроокислы Fe образуются в результате вулканической активности на Восточно-Тихоокеанском хребте, 4000–5000 км к востоку. Аl в аутигенном монтмориллоните мог образоваться в результате растворения больших количеств биогенного кремнезема или в результате адсорбции А1 речного происхождения, адсорбированного в океанах гидроокислами Fe–Mn. Fe-монтмориллонит содержит относительно много Си, Zn и Мп и возможно имеет экономическое значение как источник этих и других металлов.

Resümee

Resümee

Tonmineralien in den oberen 50 cm von Sediment, welches die Cu- und Ni-reichen Mangan- Neste im nördlichen äquatorialen Pazifik umgibt, formen zwei Fraktionen: terrigenes (meist äolisches) Illit, Chlorit und Kaolinit und authigenisches Smektit. Mit zunehmender Tiefe nimmt der Anteil des Smektit in Kernen von 26 bis 39% und von 53 bis 66% in den am weitesten östlich gelegenen beziehungsweise den am weitesten westlich gelegenen Gegenden zu und nimmt mit seewärtigem Abstand von Amerika von 26 bis 53% in Oberflächenablagerungen zu. Der Unterschied in der Menge des Smektiten im Vergleich zu anderen Tonmineralien ist auf Verdünnung mit terrigenem Schutt zurückzuführen; wahrscheinlich formt sich Smektit mit einheitlicher Geschwindigkeit über dem größten Teil der Tiefseesohle des Nord-Pazifik. Der δO18 Wert für die Smektite ist +29,6‰, was vorschlägt, daß es authigen geformt wurde, bei einer Temperatur, welche charakteristisch für die Tiefseesohle ist. Das Smektit ist ein Fe-reiches Montmorillonit, daß sich wahrscheinlich durch die chemische Reaktion von Fe-Hydroxyden und Silika formt. Silika wird von der Auflösung von biogenischem Schutt abgeleitet und das Eisenhydroxyd kommt von vulkanischer Aktivität in der Ost-Pazifik-Höhe, 4000 bis 5000 km östlich. Al im authigenischen Montmorillonit könnte von der Auflösung von großen Mengen von biogenischem Silika herstammen oder von vom Fluß abgeleitetem Al, welches auf Fe-Mn Hydroxyden im Ozean adsorbiert ist. Das Fe-Montmorillonit enthält verhältnismäßig viel Cu, Zn und Mn und könnte möglicherweise wirtschaftliche Bedeutung erhalten als eine Quelle für diese Metalle.

Résumé

Résumé

Les minéraux argileux des 50 cm du dessus du sédiment entourant les nodules de manganèse riches en Cu et en Ni dans l'Océan Pacifique équatorial Nord forment 2 fractions: l'illite, la chlorite, et la kaolinite terrigineuses (surtout éoliennes) et la smectite authigénique. La smectite dans des carottes augmente proportionellement à la profondeur de 26 à 39% et de 53 à 66% dans les régions le plus à l'est et les plus à l'ouest, respectivement, et elle augmente de 26 à 53% proportionellement à la distance des Amériques dans les dépôts de surface. Le changement dans la quantité de smectite relative aux autres minéraux argileux est dû à la dilution par des débris terrigineux; la smectite est probablement formée à une allure uniforme sur une grande partie du sol profond de l'Océan Pacifique Nord. La valeur δO18 pour la smectite est +29,6 per mil ce qui suggère qu'elle est formée authigéniquement à une température caractéristique du sol profond de l'océan. La smectite est une montmorillonite riche en Fe qui est probablement formée par la combinaison chimique à basse température d'hydroxides Fe et de silice. La silice est dérivée de la dissolution de débris biogéniques, et l'hydroxide Fe provient de l'activité volcanique à l'East Pacific Rise, de 4000 à 5000 km à l'est. Al dans la montmorillonite authigénique peut être dérivé de la dissolution de grandes quantités de silice biogénique ou d'Al dérivé de rivières, adsorbé sur les hydroxides Fe-Mn dans les océans. La montmorillonite-Fe contient assez bien de Cu, Zn, et Mn et est possiblement d'importance économique en tant que source de ces métaux et d'autres.

Type
Research Article
Copyright
Copyright © 1979, The Clay Minerals Society

References

Aoki, S., Kohyama, N., and Sudo, T. (1974) An iron-rich montmorillonite in a sediment core from the northeastern Pacific: Deep-Sea Res. 21, 865875.Google Scholar
Banks, H. H. (1972) Iron-rich saponite: Additional data on samples dredged from the Mid-Atlantic Ridge, 22°N latitude: Smithson. Contrib. Earth Sci. 9, 3942.Google Scholar
Biscaye, P. E. (1965) Mineralogy and sedimentation of recent deep sea clay in the Atlantic Ocean and adjacent seas and oceans: Geol. Soc. Am. Bull. 76, 803832.CrossRefGoogle Scholar
Bischoff, J. L. (1972) A ferroan nontronite from the Red Sea geothermal system: Clays & Clay Minerals 20, 217223.CrossRefGoogle Scholar
Bischoff, J. L. (Compiler) (1976) Deep Ocean Mining Environmental Study, NE Pacific Nodule Province, Site C, Geology and Geochemistry: U.S. Geol. Surv. Open-file Rep. 76–548, 275 pp.Google Scholar
Bischoff, J. L., Heath, G. R., and Leinen, M. (1979) Geochemistry of deep-sea sediments from the Pacific Manganese Nodule Province: DOMES sites A, B, and C: in Marine Geology and Oceanography of the Pacific Manganese Nodule Province, J. L. Bischoff and Piper, D. Z., eds., Plenum, New York, 397436.Google Scholar
Bischoff, J. L. and Rosenbauer, R. J. (1977) Recent metalliferous sediment in the North Pacific Manganese Nodule Area: Earth Planet. Sci. Lett. 33, 379–354.CrossRefGoogle Scholar
Bostrom, K. (1970) Submarine volcanism as a source for iron: Earth Planet. Sci. Lett. 9, 348354.CrossRefGoogle Scholar
Chester, R. and Stoner, J. H. (1974) Montmorillonite in surface detritus: Nature 249, 335336.CrossRefGoogle Scholar
Cook, H. E., Piper, D. Z., and Gardner, J. V. (1977) Geologic and oceanographic framework of DOMES Sites A, B, and C: Central Equatorial Pacific: in Deep Ocean Environmental Study: Geology and Geochemistry of DOMES Sites A, B, and C, Equatorial North Pacific, D. Z. Piper, Compiler, U.S. Geol. Surv. Open-file Rep. 77–778, 1581.Google Scholar
Counts, M. E., Jen, J. S. C., and Wightman, J. P. (1973) An electron spectroscopy for chemical analysis study of lead adsorbed on montmorillonite: J. Phys. Chem. 77, 19241926.CrossRefGoogle Scholar
Drever, J. I. (1976) Chemical and mineralogical studies, Site 323: Initial Reports of the Deep-Sea Drilling Project 35, 471477.Google Scholar
Eberl, D. B. and Hower, J. (1976) Kinetics of illite formation: Geol. Soc. Am. Bull. 87, 13261330.2.0.CO;2>CrossRefGoogle Scholar
Gordon, A. L. and Gerard, R. D. (1970) North Pacific bottom potential temperatures: in Geological Investigations of the North Pacific, Hayes, J. D., ed., Geol. Soc. Am. Mem. 126, 2339.CrossRefGoogle Scholar
Griffin, J. J. and Goldberg, E. D. (1963) Clay mineral distributions in the Pacific Ocean: in The Sea Vol. 3, Hill, M. N., ed., John Wiley and Sons, New York, 728741.Google Scholar
Harder, H. (1978) Synthesis of iron layer silicate minerals under natural conditions: Clays & Clay Minerals 26, 6572.CrossRefGoogle Scholar
Heath, G. R. (1969) Mineralogy of Cenozoic deep-sea sediments from the equatorial Pacific Ocean: Geol. Soc. Am. Bull. 80, 19972018.CrossRefGoogle Scholar
Heath, G. R. and Dymond, J. (1977) Genesis and transformation of metalliferous sediments from the East Pacific Rise, Bauer Deep, and Central Basin, northwest Nazca Plate: Geol. Soc. Am. Bull. 88, 723733.2.0.CO;2>CrossRefGoogle Scholar
Hein, J. R. and Jones, M. G. (1977) Mineralogy and diagenesis of DOMES Sites A and B: in Deep Ocean Environmental Study: Geology and Geochemistry of DOMES Sites A, B, and C, Equatorial North Pacific, D. Z. Piper, Compiler, U.S. Geol. Surv. Open-file Rep. 77–778, 146178.Google Scholar
Hein, J. R., Ross, C. R., Alexander, Elaine, and Yeh, H.-W. (1979) Mineralogy and diagenesis of surface sediments from DOMES sites A, B, and C: in Marine Geology and Oceanography of the Pacific Manganese Nodule Province, Bischoff, J. and Piper, D., eds., Plenum, New York, 365396.CrossRefGoogle Scholar
Hein, J. R. and Scholl, D. W. (1978) Diagenesis and distribution of late Cenozoic volcanic sediment in the southern Bering Sea: Geol. Soc. Am. Bull. 89, 197210.2.0.CO;2>CrossRefGoogle Scholar
Hein, J. R., Scholl, D. W., Barron, J. A., Jones, M. G., and Miller, J. (1978) Diagenesis of late Cenozoic diatomaceous deposits and formation of the bottom simulating reflector in the southern Bering Sea: Sedimentology 25, 155181.CrossRefGoogle Scholar
Hein, J. R., Scholl, D. W., and Gutmacher, C. E. (1976) Neogene clay minerals of the far NW Pacific and southern Bering Sea: Sedimentation and diagenesis: Proc. Int. Clay Conf., Mexico City, 1975, 7180.Google Scholar
Hem, J. D. (1977) Reactions of metal ions at surfaces of hydrous iron oxide: Geochim. Cosmochim. Acta 41, 527538.CrossRefGoogle Scholar
Hurd, D. C. (1973) Interactions of biogenic opal, sediment and seawater in the central equatorial Pacific: Geochim. Cosmochim. Acta 37, 22572282.CrossRefGoogle Scholar
Hurely, P. M., Hart, S. R., Pinson, W. H., and Fairbairn, H. W. (1959) Authigenic versus detrital illite in sediments: Geol. Soc. Am. Bull. 70, 1622, (abstract).Google Scholar
Hydes, D. J. (1977) Dissolved aluminum concentration in seawater: Nature 268, 136137.CrossRefGoogle Scholar
James, R. O. and MacNaughton, M. G. (1977) The adsorption of aqueous heavy metals on inorganic minerals: Geochim. Cosmochim. Acta 41, 15491555.CrossRefGoogle Scholar
Johnson, T. C. (1976) Biogenic opal preservation in pelagic sediments of a small area in the eastern tropical Pacific: Geol. Soc. Am. Bull. 87, 12731282.2.0.CO;2>CrossRefGoogle Scholar
Kastner, M. (1976) Diagenesis of basal sediments and basalts of Sites 322 and 323, Leg 35, Bellingshausen Abyssal Plain: Initial Reports of the Deep-Sea Drilling Project 35, 513527.Google Scholar
Knauss, J. A. (1962) On some aspects of the deep circulation of the Pacific: J. Geophys. Res. 67, 39433953.CrossRefGoogle Scholar
Koppelman, M. H. and Dillard, J. G. (1977) A study in the adsorption of Ni (II) and Cu (II) by clay minerals: Clays & Clay Minerals 25, 457462.CrossRefGoogle Scholar
Lyle, Mitchell (1976) Estimation of hydrothermal manganese input to the oceans: Geology 4, 733736.2.0.CO;2>CrossRefGoogle Scholar
MacKenzie, F. T., Stoffyn, M., and Wollast, R. (1978) Aluminum in seawater: control by biological activity: Science 199, 680682.CrossRefGoogle ScholarPubMed
McBride, M. B. (1976) Exchange and hydration properties of Cu2+ on mixed ion Na+-Cu2+ smectites: Soil Sci. Soc. Am. J. 40, 452456.CrossRefGoogle Scholar
Melson, W. G. and Thompson, G. (1973) Glassy abyssal basalts, Atlantic sea floor near St. Paul's Rocks: Petrography and composition of secondary clay minerals: Geol. Soc. Am. Bull. 84, 703716.2.0.CO;2>CrossRefGoogle Scholar
Peterson, M. N. A. and Griffin, J. J. (1964) Volcanism and clay minerals in the southeastern Pacific: J. Mar. Res. 22, 1321.Google Scholar
Piper, D. Z. (Compiler) (1977) Deep Ocean Environmental Study: Geology and Geochemistry of DOMES Sites A, B, and C., Equatorial North Pacific, U.S. Geol. Surv. Open-file Rep. 77–778, 527 pp.Google Scholar
Piper, D. Z. and Cook, H. (1979) Litho- and acoustic-stratigraphy of Equatorial North Pacific DOMES sites A, B, and C: in Marine Geology and Oceanography of the Pacific Manganese Nodule Province, Bischoff, J. L. and Piper, D. Z., eds., Plenum, New York, 309348.CrossRefGoogle Scholar
Pronina, N. V. and Varentsov, I. M. (1973) Adsorption of nickel and cobalt from seawater by natural iron and manganese hydroxides: Dokl. Akad. Nauk SSSR 210, 241244.Google Scholar
Quinterno, Paula and Theyer, F. (1979) Biostratigraphy of the Equatorial North Pacific DOMES sites A, B, and C: in Marine Geology and Oceanography of the Central Pacific Manganese Nodule Province, Bischoff, J. L. and Piper, D. Z., eds., Plenum, New York, 349364.CrossRefGoogle Scholar
Reid, J. L. (1969) Preliminary results of measurements of deep currents in the Pacific Ocean: Nature 226, 848.CrossRefGoogle Scholar
Ross, C. S. and Hendricks, S. B. (1945) Minerals of the montmorillonite group: U.S. Geol. Surv. Prof. Pap. 205–B, 79 pp.Google Scholar
Savin, S. M. and Epstein, S. (1970a) The oxygen and hydrogen isotope geochemistry of clay minerals: Geochim. Cosmochim. Acta 34, 2542.CrossRefGoogle Scholar
Savin, S. M. and Epstein, S. (1970b) The oxygen and hydrogen isotope geochemistry of ocean sediments and shales: Geochim. Cosmochim. Acta 34, 4363.CrossRefGoogle Scholar
Sayles, F. L. and Bischoff, J. L. (1973) Ferromanganoan sediments in the Equatorial East Pacific: Earth Planet. Sci. Lett. 19, 330336.CrossRefGoogle Scholar
Scheidegger, K. F. and Stakes, D. S. (1977) Mineralogy, chemistry and crystallization sequence of clay minerals in altered tholeiitic basalts from the Peru Trench: Earth Planet. Sci. Lett. 36, 413422.CrossRefGoogle Scholar
Seyfried, W. E., Shanks, W. C., and Bischoff, J. L. (1976) Alteration and vein formation in Site 321 basalts: Initial Reports of the Deep-Sea Drilling Project 34, 385392.Google Scholar
Van Bennekom, A. J. and Van der Gaast, S. J. (1976) Possible clay structures in frustules of living diatoms: Geochim. Cosmochim. Acta 40, 11491152.CrossRefGoogle Scholar
Vallier, T. L. and Kidd, R. B. (1977) Volcanic sediments in the Indian Ocean: in Indian Ocean Geology and Biostratigraphy, Heirtzler, J. R. Bolli, H. M. Davies, T. A. Saunders, J. B., and Sclater, J. G., eds., Am. Geophys. Union, Washington, D.C., 87118.Google Scholar
Weaver, C. E. and Pollard, L. D. (1975) The Chemistry of Clay Minerals: Elsevier Scientific Pub. Co., New York, 213 pp.Google Scholar
Windom, H. L. (1969) Atmospheric dust records in permanent snowfields: Implications to marine sedimentation: Geol. Soc. Am. Bull. 80, 761782.CrossRefGoogle Scholar
Yeh, H. W. and Eslinger, E. V. (1979) Hydrogen and oxygen isotopic and mineralogic studies of the Mississippi River sediments (in preparation).Google Scholar
Yeh, H. W. and Savin, S. M. (1977) Mechanism of burial metamorphism of argillaceous sediments: 3. O-isotope evidence: Geol. Soc. Am. Bull. 88, 13211330.2.0.CO;2>CrossRefGoogle Scholar