Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T14:39:55.842Z Has data issue: false hasContentIssue false

Origin, Diagenesis, and Mineralogy of Chlorite Minerals in Devonian Lacustrine Mudrocks, Orcadian Basin, Scotland

Published online by Cambridge University Press:  28 February 2024

S. Hillier*
Affiliation:
Department of Geology, University of Southampton, Southampton S09, 5BP, UK Laboratoire de Géologie, Ecole Normale Superieur, 24 rue Lhomond, 75231 Paris, France
*
1Present address: Geologisches Institut Universität Bern, Baltzerstrasse 1, CH3012, Bern, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Chlorite and corrensite are common clay minerals in lacustrine mudrocks from the Devonian Orcadian Basin, Scotland. The relationship of their occurrence to vitrinite reflectance data demonstrate that they are authigenic minerals, formed during burial diagenesis/metamorphism at temperatures of ≥120°C. Whole rock mineralogical and chemical analyses show that chlorite authigenesis occurred by reactions between the detrital dioctahedral clay mineral assemblage and dolomite that was formed under early evaporitic conditions in the lacustrine environment.

XRD and electron microprobe analyses indicate that phases intermediate between corrensite and chlorite are probably mixed-layer chlorite/corrensite with a tendency towards segregation of layer types. Chemically, the conversion of corrensite to chlorite involves an increase in Al for Si substitution in tetrahedral sites, but there is no change in the Fe/Mg ratio of octahedral cations. There is also no relationship of mixed-layer proportions to paleotemperature; only a general paleotemperature interval of approximately 120° to 260°C in which a range of phases between corrensite and chlorite occurs. Chlorite polytypes are exclusively IIb, indicating the formation of this polytype at diagenetic temperatures.

The occurrence of corrensite and Mg-rich chlorite in evaporite and carbonate successions is probably a reliable indicator of diagenetic alteration at temperatures of ≥ 100°C. Burial diagenetic reactions between dioctahedral clay minerals and Mg-rich carbonates may possibly explain many occurrences of corrensite and Mg-rich chlorite in such rocks.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

References

Almon, W. R., Fullerton, L. B. and Davies, D. K., 1976 Pore space reduction in Cretaceous sandstones through chemical precipitation of clay minerals J. Sed. Petrol. 46 8996.Google Scholar
April, R. H., 1981 Trioctahedral smectite and interstratified chlorite/smectite in Jurassic strata of the Connecticut Valley Clays & Clay Minerals 29 3139 10.1346/CCMN.1981.0290105.CrossRefGoogle Scholar
Astin, T. R. and Rodgers, D. A., 1991 ’Subaqueous shrinkage cracks’ in the Devonian of Scotland reinterpreted J. Sed. Petrol. 61 850859 10.2110/jsr.61.850.Google Scholar
Barker, C. E., Pawlewicz, M. J., Buntebarth, G. and Stegena, L., 1986 The correlation of vitrinite reflectance with maximum temperature in humic organic matter Lecture Notes in Earth Sciences 5. Palaeogeothermics Berlin Springer-Verlag 7993.Google Scholar
Bettison, L. A. and Schiffman, P., 1988 Compositional and structural variations of phyllosilicates from the Point Sal ophiolite, California Amer. Mineral. 73 6276.Google Scholar
Bettison-Varga, L., Mackinnon, I D R and Schiffman, P., 1991 Integrated TEM, XRD, and electron microprobe investigation of mixed-layer chlorite smectite from the Point Sal ophiolite J. Meta. Geol. 9 697710 10.1111/j.1525-1314.1991.tb00559.x.CrossRefGoogle Scholar
Bjorlykke, K., Chilin-garian, G. V. and Wolf, K. H., 1988 Sandstone diagenesis in relation to preservation, destruction and creation of porosity Diagenesis 1, Developments in Sedimentology 41 Amsterdam Elsevier 555588.Google Scholar
Bodine, M. J., Schreiber, B. C. and Harner, H. L., 1985 Trioctahedral clay mineral assemblages in Paleozoic marine evaporites 6th International Symposium on Salt, Vol. 2 267284.Google Scholar
Bodine, M. W. Madsen, B. M., Schultz, L. G., Olphen, H. v. and Mumpton, F. A., 1987 Mixed-layer chlorite/smectites from a Pennsylvanian evaporite cycle, Grand County, Utah Proceedings of the International Clay Conference Denver, 1985 8593.CrossRefGoogle Scholar
Chameley, H., 1989 Clay Sedimentology Berlin Springer-Verlag 10.1007/978-3-642-85916-8.CrossRefGoogle Scholar
Chang, H. K., Mackenzie, F. T. and Schoonmaker, J., 1986 Comparisons between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian offshore basins Clays & Clay Minerals 34 407423 10.1346/CCMN.1986.0340408.CrossRefGoogle Scholar
Chudaev, O. V., 1978 Occurrence of clay minerals in flyschoid sediments of eastern Kamchatka (in Russian) Litol. Polezn. Iskop. 1 105115.Google Scholar
Donovan, R. N., 1980 Lacustrine cycles, fish ecology and stratigraphic zonation in the Middle Devonian of Caithness Scott. J. Geol. 16 3550 10.1144/sjg16010035.CrossRefGoogle Scholar
Droste, J. B., 1963 Clay mineral composition of evaporite sequences Symposium on Salt 5663.Google Scholar
Fisher, R. S., 1988 Clay minerals in evaporite host rocks, Palo Duro Basin, Texas Panhandle J. Sed. Petrol. 58 836844.Google Scholar
Fraser, G. C., Harvey, R. D. and Baxter, J. W., 1973 Paleoenvironmental significance of corrensite in middle Mississippian rocks in southern Illinois Geol. Soc. Am. Abst. with Prog. 5 315.Google Scholar
Hauff, P. L., (1981) Corrensite: mineralogical ambiguities and geologic significance: U.S.G.S. Open-file Report 81–850, 45 pp.Google Scholar
Hayes, J. B., 1970 Polytypism of chlorite in sedimentary rocks Clays & Clay Minerals 18 285306 10.1346/CCMN.1970.0180507.CrossRefGoogle Scholar
Helmold, K. P. and van de Kamp, P. C., 1984 Diagenetic mineralogy and controls on albitisation and laumontite formation in Paleogene arkoses, Santa Ynez Mountains, California Clastic Diagenesis 27 239276.Google Scholar
Hillier, S., 1989 Clay mineral diagenesis and organic maturity indicators in Devonian lacustrine mudrocks from the Orcadian Basin, Scotland .Google Scholar
Hillier, S. and Clayton, T., 1989 Mite/smectite diagenesis in Devonian lacustrine mudrocks from northern Scotland and its relationship to organic maturity indicators Clay Miner. 24 181196 10.1180/claymin.1989.024.2.06.CrossRefGoogle Scholar
Hillier, S. and Velde, B., 1991 Octahedral occupancy and the chemical composition of diagenetic (low temperature) chlorites Clay Miner. 26 149168 10.1180/claymin.1991.026.2.01.CrossRefGoogle Scholar
Hillier, S. and Clayton, T., 1992 Cation exchange staining of clay minerals in thin section for electron microscopy Clay Miner. 27 379384 10.1180/claymin.1992.027.3.11.CrossRefGoogle Scholar
Hillier, S. and Marshall, J. E. A., 1992 Organic maturation, thermal history and hydrocarbon generation in the Orcadian Basin, Scotland J. Geol. Soc. Lond. 149 491502 10.1144/gsjgs.149.4.0491.CrossRefGoogle Scholar
Hower, J., 1981 X-ray diffraction identification of mixed-layer clay minerals Clays and the Resource Geologist 7 3959.Google Scholar
Hutcheon, I., 1990 Clay-carbonate reactions in the Venture area, Scotian Shelf, Nova Scotia, Canada Fluid-Mineral Interactions: A Tribute to H. P. Eugster 2 199212.Google Scholar
Hutcheon, I., Oldershaw, A. and Ghent, E. D., 1980 Diagenesis of Cretaceous sandstones of the Kootenay Formation at Elk Valley (southeast British Columbia) and Mt. Allan (southwestern Alberta) Geochim. Cosmochim. Acta 44 14251435 10.1016/0016-7037(80)90108-8.CrossRefGoogle Scholar
Ijima, A. and Utada, M., 1971 Present-day zeolitic diagenesis of the Neogene geosynclinal deposits in the Niigata oil field, Japan Molecular sieve zeolites—I. Advances in chemistry series 101 342348 10.1021/ba-1971-0101.ch027.CrossRefGoogle Scholar
Inoue, A., 1985 Chemistry of corrensite: A trend in composition of trioctahedral chlorite/smectite during diagenesis Journal of the College of Arts and Sciences, Chiba University B–18 6982.Google Scholar
Inoue, A., Schultz, L. G., van Olphen, H. and Mumpton, F. A., 1987 Conversion of smectite to chlorite by hydrothermal and diagenetic alterations, Hokuroku Kuroko mineralization area, northeast Japan Proceedings of the International Clay Conference, Denver, 1985 158164.CrossRefGoogle Scholar
Inoue, A. and Utada, M., 1991 Smectite to chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, northern Honshu, Japan Amer. Mineral. 76 628640.Google Scholar
Janaway, T. M. and Parnell, J., 1989 Carbonate production within the Orcadian Basin, Northern Scotland: A petrographic and geochemical study Palaeogeography, Palaeo-climatology, Palaeoecology 70 89105 10.1016/0031-0182(89)90082-5.CrossRefGoogle Scholar
Jeans, C. V., 1978 The origin of the Triassic clay assemblages of Europe with special reference to the Keuper Marl and Rhaetic of parts of England Phil. Trans. R. Soc. Lond. 289 549639 10.1098/rsta.1978.0068.Google Scholar
Jones, B. F., 1986 Clay mineral diagenesis in lacustrine sediments. Studies in Diagenesis U.S. G.S. Bull. 1578 291300.Google Scholar
Johns, W. D. Grim, R. E. and Bradley, W. F., 1954 Quantitative estimations of clay minerals by diffraction methods J. Sed. Petrol. 24 242255.Google Scholar
Johnson, L. J., 1964 Occurrence of a regularly interstratified chlorite-vermiculite as a weathering product of chlorite in a soil Amer. Mineral. 49 556572.Google Scholar
Kisch, H. J., 1981 Coal rank and iilite crystallinity associated with the zeolite facies of Southland and the pumpellyite-bearing facies of Otago, southern New Zealand N. Zeal. J. Geol. Geophys. 24 349360.Google Scholar
Kübier, B., 1973 La corrensite, indicateur possible de milieux de sédimentation et du degré de transformation d’un sédiment Bull. Centre Rech. Pau-S.N.P.A. 7 543556.Google Scholar
Kübier, B., Pittion, J. L., Heroux, Y., Charollais, J. and Wiedman, M., 1979 Sur le pouvoir reflecteur de la vitrinite dans quelques roches du Jura, de la Molasse et de la Nappes préalpines, helvétiques et penniques Eclogae Geol. Helv. 72 347373.Google Scholar
Laird, J. and Bailey, S. W., 1988 Chlorites: Metamorphic petrology Hydrous Phyllosilicates (Exclusive of Micas) Washington, D.C. Mineralogical Society of America.Google Scholar
Lanson, B. and Besson, G., 1992 Characterisation of the end of smectite to illite transformation: Decomposition of X-ray patterns Clays & Clay Minerals 40 4052 10.1346/CCMN.1992.0400106.CrossRefGoogle Scholar
Lee, J. H., Ahn, J. H. and Peacor, D. R., 1985 Textures in layered silicates: Progressive changes through diagenesis and low temperature metamorphism J. Sedim. Petrol. 55 532540.Google Scholar
Lippmann, F. and Pankau, H.-G., 1988 Der Mineralbestand des Mittleren Musheikalkes von Nalgold, Warttemberg Neues Jahrbuch Miner. Abh. 158 257292.Google Scholar
Lucas, J., 1962 La transformation de minéraux argileux dans la sédimentation: Études sur les argiles du Trias Mém. Surv. Carte Géol. Isace Lorraine 23 1202.Google Scholar
Merrel, H. W., Jones, D. J. and Sand, L. B., 1957 Sedimentation features in paradox shales, southeastern Utah Bull. Geol. Soc. Am. 68 1766.Google Scholar
Meunier, A., Clement, J., Bouchet, A. and Beaufort, D., 1988 Chlorite-calcite and corrensite-dolomite crystallization during two superimposed events of hydrothermal alteration in the’ les Cretes’ granite, Vosge, France Canadian Miner. 26 413422.Google Scholar
Millot, G., 1964 Géologie des Argiles .Google Scholar
Monnier, F., 1982 Thermal diagenesis in the Swiss molasse Basin: Implications for oil generation Can. J. Earth Sci. 19 328342 10.1139/e82-025.CrossRefGoogle Scholar
Muffler, L J P and White, D. E., 1969 Active metamorphism of upper Cenozoic sediments in the Salton Sea geothermal field and the Salton Trough, Southeast California Geol. Soc. Am. Bull. 80 157182 10.1130/0016-7606(1969)80[157:AMOUCS]2.0.CO;2.CrossRefGoogle Scholar
Parnell, J., 1985 Evidence for replaced evaporites in the ORS of northern Scotland: Replaced gypsum horizons in Easter Ross Scott. J. Geol. 21 377380 10.1144/sjg21030377.CrossRefGoogle Scholar
Peterson, M. N. A., 1961 Expandable chloritic clay minerals from the Upper Mississippian carbonate rocks of the Cumberland Plateau in Tennessee Amer. Mineral. 46 12451269.Google Scholar
Pettijohn, F. J., 1957 Sedimentary rocks 2nd.Google Scholar
Pollastro, R. M. and Barker, C. E., 1986 Application of clay mineral, vitrinite reflectance and fluid inclusion studies to the thermal and burial history of the Pinedale anticline, Green River Basin, Wyoming Roles of Organic Matter in Sediment Diagenesis 38 7383 10.2110/pec.86.38.0073.CrossRefGoogle Scholar
Proust, D., Eymery, J.-P. and Beaufort, D., 1986 Supergene vermiculitization of a magnesian chlorite: Iron and magnesian removal processes Clays & Clay Minerals 34 572580 10.1346/CCMN.1986.0340511.CrossRefGoogle Scholar
Rao, C. G. and Bhattacharya, N., 1973 Corrensite from the Sirban limestone of Riasi, Jammu, and Kashmir state, India J. Geol. Soc. India 14 193196.Google Scholar
Reynolds, R. C. Jr. 1985() NEWMOD © A computer program for the calculation of the one-dimensional patterns of mixed-layered clays: R. C. Reynolds, 8 Brook Rd., Hanover, New Hampshire.Google Scholar
Reynolds, R. C. Jr. and Bailey, S. W., 1988 Mixed-layer chlorite minerals Hydrous Phyllosilicates (Exclusive of Micas) 601629 10.1515/9781501508998-020.CrossRefGoogle Scholar
Rogers, D. A. and Astin, T. R., 1991 Ephemeral lakes, mud pellet dunes and wind blown sand and silt: Reinter-pretations of Devonian lacustrine cycles in north Scotland Lacustrine Facies Analysis 13 201223.Google Scholar
Schiflman, P. and Fridleifsson, G. O., 1991 The smectite-chlorite transition in drillhole NJ-15, Nesjavellir geothermal field, Iceland: XRD, BSE and electron microprobe investigations J. Meta. Geol. 9 679696 10.1111/j.1525-1314.1991.tb00558.x.CrossRefGoogle Scholar
Schultz, L. G., 1963 Clay minerals in the Triassic rocks of the Colorado Plateau USGS Bull. .Google Scholar
Shau, Y. H., Peacor, D. R. and Essene, E. J., 1990 Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM, EMPA, XRD, and optical studies Contrib. Miner. Petrol. 105 123142 10.1007/BF00678980.CrossRefGoogle Scholar
Stalder, P., 1979 Organic and inorganic metamorphism in the Taveyannaz sandstone of the Swiss Alps and equivalent sandstones in France and Italy J. Sed. Petrol. 49 463482.Google Scholar
Velde, B., (1985) Clay minerals: A physico chemical explanation of their occurrence. Developments in Sedimentology No. 40: Elsevier, Amsterdam, 421 pp.Google Scholar
Walker, J. R., 1989 Polytypism of chlorite in very low grade metamorphic rocks Amer. Mineral. 74 738743.Google Scholar
Wiewióra, A. and Weiss, Z., 1990 Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group Clay Miner. 25 8392 10.1180/claymin.1990.025.1.09.CrossRefGoogle Scholar
Wilson, M. J., 1971 Clay mineralogy of the Old Red Sandstone (Devonian) of Scotland J. Sed. Petrol. 41 9951007 10.1306/74D723D8-2B21-11D7-8648000102C1865D.CrossRefGoogle Scholar
Wilson, M. J., Nadeau, P. H. and Drever, J. I., 1985 Interstratified clay minerals and weathering processes The Chemistry of Weathering. 97118 10.1007/978-94-009-5333-8_6.CrossRefGoogle Scholar
Zen, E. A., 1959 Clay mineral carbonate relations in sedimentary rocks Am. J. Sci. 257 2943 10.2475/ajs.257.1.29.CrossRefGoogle Scholar