Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T18:37:06.608Z Has data issue: false hasContentIssue false

Optically Selective Adsorption of α-Amino Acids on Montmorillonite-Cu-1-Lysine Complexes in High-Pressure Liquid Chromatography

Published online by Cambridge University Press:  02 April 2024

Faina Tsvetkov
Affiliation:
Institute of Soils and Water, Agricultural Research Organization, P.O. Box 6, The Volcani Center, Bet Dagan 50-250, Israel
U. Mingelgrin
Affiliation:
Institute of Soils and Water, Agricultural Research Organization, P.O. Box 6, The Volcani Center, Bet Dagan 50-250, Israel
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Optically active cationic complexes adsorbed on montmorillonite can be used for the resolution of racemic mixtures. Montmorillonite-Cu-lysine systems were used as a solid phase in high-pressure liquid chromatography for the resolution of the optical isomers of α-amino acids. Selectivity constants > 1.5 were measured for phenylalanine and tryptophan. The selectivity constants for the amino acids containing saturated-hydrocarbon side chains were in the range of 1.25–1.44. The montmorillonite-Cu-l-lysine complex displayed a stronger affinity for the l-isomers of α-amino acids than for the d-isomers at pHs near neutrality. Inasmuch as surface-catalyzed peptide formation on clays has been proposed as a step in chemical evolution, this stronger affinity between the clay-Cu-l-amino acid complex and l-amino acids might have been significant in prebiotic evolution. The mechanism of optical resolution probably involved ligand exchange. Optimizing the choice of the optically active ligands and of the chelating cation in the chiral agent may improve the resolution of the optical isomers.

Type
Research Article
Copyright
Copyright © 1987, The Clay Minerals Society

References

Bailey, G. W., White, J. L. and Rothberg, T., 1968 Adsorption of organic herbicides by montmorillonite. Role of pH and chemical character of adsorbate Soil Sci. Soc. Amer. Proc. 32 222234.CrossRefGoogle Scholar
Bodenheimer, W. and Heller, L., 1967 Sorption of a-amino acids by copper montmorillonite Clay Miner. 7 167176.CrossRefGoogle Scholar
Bondy, S. C. and Harrington, M. E., 1979 1-Amino acids and d-glucose bind sterospecifically to a colloidal clay Science 203 12431244.CrossRefGoogle Scholar
Brookes, G. and Pettit, L. D., 1975 Stereoselectivity in the formation of ternary histidinatocopper(II) complexes in the biological pH range J. Chem. Soc. Chem. Commun. 385386.CrossRefGoogle Scholar
Cotton, F. A. and Wilkinson, G., 1966 Advanced Inorganic Chemistry New York Interscience 146.Google Scholar
Davankov, V. A., 1981 Resolution of racemates by ligand-exchange chromatography Adv. Chromatogr. 18 139195.Google Scholar
Doner, H. E. and Mortland, M. M., 1969 Benzene complex with copper(II) montmorillonite Science 166 14061407.CrossRefGoogle ScholarPubMed
Frenkel, H. and Shainberg, I., 1980 The effect of hydroxy-Al and hydroxy-Fe polymers on montmorillonite particle size Soil Sci. Soc. Amer. J. 44 626629.CrossRefGoogle Scholar
Grushka, E., Leshem, R. and Gilon, C., 1983 Retention of amino acid enantiomers in reversed-phase liquid chromatography J. Chromatogr. 255 4150.CrossRefGoogle Scholar
Gubitz, G., Jellenz, W. and Santi, W., 1981 Separation of the optical isomers of amino acids by ligand exchange chromatography using chemical bonded chiral phases J. Chromatogr. 203 377394.CrossRefGoogle Scholar
Harada, K., 1968 Optical resolution of dl-aspartic acid copper complex by the use of biopolimers Nature 218 199.CrossRefGoogle Scholar
Harada, K., 1970 Origin and development of optical activity of organic compounds on the primordial Earth Na-turwiss. 57 114119.Google Scholar
Hare, P. E. and Gil-Av, E., 1979 Separation of d- and 1-amino acids liquid chromatography: Use of chiral eluents Science 204 12261228.CrossRefGoogle Scholar
Heller-Kallai, L., Yariv, S., Riemer, M. and Serratosa, J. M., 1973 Effect of acidity on the sorption of histidine by montmorillonite Proc. Int. Clay Conf., Madrid, 1972 Madrid Div. Ciencias C.S.I.C 651662.Google Scholar
Kerr, F., Hamilton, P. K., Pill, R. J., Wheeler, G. V., Lewis, D. R., Burkhardt, W., Reno, D., Taylor, G. L., Mielenz, R. C., King, M. E. and Shieltz, N. C., 1950 Analytical data on reference clay materials Amer. Petrol. Inst. Prelim. Rept. 7 7683.Google Scholar
Kurganov, A. A. and Davankov, V. A., 1981 Ligand-ex-change chromatography of racemates. XVI. Microbore column chromatography of amino acid racemates using N,N-tetramethyl-(R)-propanediamine 1,2-copper(II) complexes as chiral additives to the eluent J. Chromatogr. 218 559567.CrossRefGoogle Scholar
Lahav, N., White, D. and Chang, S., 1978 Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments Science 201 6769.CrossRefGoogle ScholarPubMed
Lindner, W., Le Page, J. N., Davies, G., Sietz, D. E. and Karger, B. L., 1979 Reversed-phase separation of optical isomers of dansyl amino acids and peptides using chiral metal chelate additives J. Chromatogr. 185 323344.CrossRefGoogle Scholar
Mingelgrin, U. and Tsvetkov, F., 1985 Adsorption of di-methyanilines on montmorillonite in high pressure liquid chromatography Clays & Clay Minerals 33 285294.CrossRefGoogle Scholar
Siegel, A., 1966 Equilibrium binding studies of zinc-glycine complexes to ion-exchange resins and clays Geochim. Cosmochim. Acta 30 757768.CrossRefGoogle Scholar
Siffert, B. and Kessaissia, V. S., 1978 Contribution au mechanism d’adsorption des α-amino acides par la montmorillonite Clay Miner. 13 255270.CrossRefGoogle Scholar
Stumm, W. and Morgan, J. J., 1981 Aquatic Chemistry. An Introduction Emphasizing Chemical Equilibria in Natural Waters 2nd ed. New York Wiley 239.Google Scholar
Ure, A. M. and Barrow, W. L., 1970 Copper, zinc, manganese in EDTA soil extracts Anal. Chim. Acta 52 247257.CrossRefGoogle Scholar
Weinstein, S., 1982 Resolutions of d- and 1-amino acids by HPLC with copper complexes of N,N-dialkyl a-amino acids as novel chiral additives: A structure-selectivity study Angew. Chem. Suppl 425433.CrossRefGoogle Scholar
Williams, D. R., 1972 Thermodynamic considerations in coordination. X. Potentiometric and calorimetric investigation of copper(II) histidine complexes in solution J. Chem. Soc, Dalton Trans. 1 790797.CrossRefGoogle Scholar
Yamagishi, A., 1982 Clay column chromatography: Partial resolution of metal(III) tris(acetylacetonate) on a A-nick-el(II) tris(1,10 phenanthroline) montmorillonite column Inorg. Chem. 21 33933396.CrossRefGoogle Scholar
Yamagishi, A. and Ohnishi, R., 1982 Clay column chromatography for optical resolution: Partial resolution of tris-(acetylacetonato) metal(III) on a A-tris(1,10-phenan-throline)ruthenium(II) montmorillonite column J. Chromatogr. 245 213218.CrossRefGoogle Scholar
Yamagishi, A. and Ohnishi, R., 1983 Chromatographic resolution of cyclic organic compounds on a A-tris(1,10-phenanthroline)ruthenium(II) montmorillonite column Angew. Chem., Int. Ed.-Eng. 22 162163.CrossRefGoogle Scholar
Yamagishi, A. and Soma, M., 1981 Optical resolution of metal chelates by use of adsorption on a colloidal clay J. Amer. Chem. Soc. 103 46404642.CrossRefGoogle Scholar
Yang, S. D. and Condrate, R. A., 1971 The IR spectra of lysine, adsorbed on several cation substituted montmorillonites Clays & Clay Minerals 20 7582.Google Scholar
Yang, S. D. and Condrate, R. A., 1972 Infrared spectra of α-alanine adsorbed on Cu-montmorillonite Applied Spectroscopy 26 102104.Google Scholar