Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T04:06:50.643Z Has data issue: false hasContentIssue false

A Nuclear Magnetic Resonance (NMR) and Fourier-Transform Infrared (FTIR) Study of Glycine Speciation on a Cd-Rich Montmorillonite

Published online by Cambridge University Press:  28 February 2024

Paola Di Leo*
Affiliation:
Istituto di Ricerca sulle Argille, CNR, Area di Ricerca di Potenza, Via S. Loja, 85050, Tito Scalo (PZ), Italy
*
E-mail of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As a consequence of treatments with glycine solutions, glycine molecules enter the interlayer of both Ca- and Cd-rich montmorillonite. Measurements of d value suggest that at low glycine concentration (0.01 and 0.1 M glycine solutions) a “flat” arrangement of the glycine molecules occurs in the interlayer. In contrast, intercalation of more than one monolayer of glycine molecules occurs for the montmorillonite treated with a higher concentration of glycine (1 M glycine solution).

Interlayer complexation of glycine occurs only for the Cd-rich form of montmorillonite, whereas no complexation is observed for Ca-rich montmorillonite. Both nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) results suggest that the adsorbed glycine, which fully protonates in the interlayer of montmorillonite to give the GlyH2 species, interacts with the interlayer Cd2+ to form the CdGlyx complex mainly through the carboxylate group. The interlayer cadmium, present as both Cd2+ and CdCl, is complexed by the ligand glycine. In contrast, the cadmium adsorbed on the external surfaces of montmorillonite does not interact with the ligand. Complexation of CdCl+ only occurs for large amounts of adsorption of glycine (e.g., for samples treated with 1 M glycine solution).

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

References

Bain Ackerman, M.J. and Ackerman, J.J.H., (1980) Cadmium-113 NMR of supercooled aqueous solutions The Journal of Physical Chemistry 84 31513153 10.1021/j100461a003.CrossRefGoogle Scholar
Bank, S. Bank, J.F. and Ellis, P.D., (1989) Solid-state 113Cd nuclear magnetic resonance of exchanged montmorillonites The Journal of Physical Chemistry 93 4878 4855 10.1021/j100349a034.CrossRefGoogle Scholar
Barrie, P.J. Gyani, A. Montevalli, M. and O’Brien, P., (1993) Solid-state 113Cd NMR studies on cadmium complexes with glycine, L-alanine, and L-cysteine Inorganic Chemistry 32 38623867 10.1021/ic00070a016.CrossRefGoogle Scholar
Brown, G. Brindley, G.W., Brindley, G.W. and Brown, G., (1980) X-ray diffraction procedures for clay mineral identification Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society 305360.CrossRefGoogle Scholar
Chapman, H.D., Blak, C.A. Evans, D.D. White, J.L. Ensminger, L.E. and Clark, F.E., (1965) Cation exchange capacity Methods of Soil Analysis Madison, Wisconsin American Society of Agronomy 891901.Google Scholar
Croten, J.P. Luten, J.B. Bruggeman, I.M. Temmink, J.H.M. and Van Bladeren, P.J., (1992) Cd-metallothionein complex Toxicology in Vitro 6 50.Google Scholar
Di Leo, P. and O’Brien, P., (1999) Nuclear magnetic resonance (NMR) study of Cd2+ sorption on montmorillonite Clays and Clay Minerals 47 761768 10.1346/CCMN.1999.0470611.CrossRefGoogle Scholar
Ducros, P. and Dupont, M., (1962) Etude par RMN des protons dans les argiles Bulletin Grope Français des Argiles 13 5963 10.3406/argil.1962.985.CrossRefGoogle Scholar
Fripiat, J.J. Jelli, A.N. Poncelet, G. and Andre, J., (1965) Thermodynamic properties of adsorbed water and electrical conduction in montmorillonite Journal of Physical Chemistry 69 21852197 10.1021/j100891a007.CrossRefGoogle Scholar
Gyani, A., (1994) The complexation of toxicity of cadmium with selected O-, N- and S-donor ligands Great Britain Queen Mary and Westfield College, University of London.Google Scholar
Green-Kelly, R., (1953) Irreversible dehydration in montmorillonite. Part II Clay Minerals Bulletin 2 5256 10.1180/claymin.1953.002.9.09.CrossRefGoogle Scholar
Green-Kelly, R., (1953) The identification of montmorillonoids Journal of Soil Science 4 233237.Google Scholar
Hecht, A.M. Ducros, P. and Dupont, M., (1966) Etude par RMN de l’eau adsorbée dans les argiles Bulletin Societé Français Mineralogie Cristallographie 86 613 10.3406/bulmi.1966.5925.CrossRefGoogle Scholar
Inskeep, W.P. and Baham, J., (1983) Competitive complexation of Cd(II) and Cu(II) by water-soluble organic ligands and Na-montmorillonite Soil Science Society of America Journal 47 11091115 10.2136/sssaj1983.03615995004700060010x.CrossRefGoogle Scholar
Lagaly, G. Weiss, A. and Heller, L., (1969) Determination of the layer charge in mica-type silicates Proceedings of the International Clay Conference, 1969, Tokyo, Volume I Jerusalem Israel Universities Press 6180.Google Scholar
More, J.W. and Ramamoorthy, S., (1984) Heavy Metals in Natural Waters New York Springer Verlag 10.1007/978-1-4612-5210-8.CrossRefGoogle Scholar
Mortland, M.M., (1970) Clay-organic complexes and interactions Advanced Agronomy 23 75117 10.1016/S0065-2113(08)60266-7.CrossRefGoogle Scholar
Mortland, M.M. Frippiat, J.J. Chaussidon, J. and Uytterhoeven, J., (1963) Interaction between NH3 and montmorillonite and vermiculite Journal of Physical Chemistry 67 248258 10.1021/j100796a009.CrossRefGoogle Scholar
Nolle, A., (1978) Isotropic and anisotropic nuclear magnetic shielding of 113Cd in cadmium-halides, cadmium chalcogenides and in cadmium-carbonate Naturforsch 33 666671 10.1515/znb-1978-0622.CrossRefGoogle Scholar
Rivera, E. and Ellis, P.D., (1992) 113Cd shielding tensor of cadmium compounds. 8. Solid-state 113Cd NMR studies of poly(bis(glycine)cadmium chloride) Inorganic Chemistry 31 20962103 10.1021/ic00037a022.CrossRefGoogle Scholar
Siantar, D.P. Feinberg, B.A. and Fripiat, J.J., (1994) Interaction between organic and inorganic pollutants in the interlayer Clays and Clay Minerals 42 187196 10.1346/CCMN.1994.0420209.CrossRefGoogle Scholar
Singh, J. Huang, P.M. Hammer, U.T. and Liaw, W.K., (1996) Influence of citric acid and glycine on the adsorption of mercury (II) by kaolinite under various pH conditions Clays and Clay Minerals 44 4148 10.1346/CCMN.1996.0440104.CrossRefGoogle Scholar
Solomon, W. and Forstner, U., (1984) Metals in the Hydrocycle New York Springer-Verlag 10.1007/978-3-642-69325-0.CrossRefGoogle Scholar
Sposito, G., (1989) The Chemistry of Soils New York Oxford University Press.Google Scholar
Stumm, W., (1992) Chemistry of the Solid-Water Interface New York Wiley Interscience.Google Scholar
Stumm, W. and Morgan, J.J., (1981) Aquatic Chemistry New York Wiley Interscience.Google Scholar
van Olphen, H., (1963) An Introduction to Clay Colloid Chemistry New York Wiley Interscience.Google Scholar