Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T16:50:09.777Z Has data issue: false hasContentIssue false

A Nexafs Study of the Orientation of Benzoate Intercalated into a Layer Double Hydroxide

Published online by Cambridge University Press:  28 February 2024

G. D. Moggridge
Affiliation:
Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
P. Parent
Affiliation:
LURE, Centre Universitaire de Paris Sud, Bat. 209d, 91405, Orsay Cedex, France
G. Tourillon
Affiliation:
LURE, Centre Universitaire de Paris Sud, Bat. 209d, 91405, Orsay Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

NEXAFS is shown to be an excellent technique, of potentially widespread application, for the determination of the orientation of organic molecules intercalated in preferentially oriented thin films of polycrystalline, layered minerals. A NEXAFS study of [Mg2Al(OH)6]+C7H5O2 · nH2O, a layered anionic clay, is described. This material shows a transition from a layer spacing of 15.4 Å to only 9 Å at a remarkably low temperature (below 100°C). This is shown to be accompanied by a change in the angle of the plane of the benzoate molecule to the 00ℓ planes from 35° ± 10° to 0° ± 10°. The tilt of the benzoate anion in the room temperature structure demonstrates the presence of an interaction between the phenyl ring and the positively charged, brucite-like layers. Furthermore it is suggestive of the importance of hydrogen bonding in determining the interlayer spacing and stability.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

References

Allmann, R., (1968) The structure of pyroaurite: Acta. Crystallog. B24, 972977.CrossRefGoogle Scholar
Allmann, R., (1970) Doppelschichtstukturen mit brucitähnlichen Schichtionen [Me(II)1–xMe(III)x(OH)2]x+: Chimia 24, 99108.Google Scholar
Bader, M., Hillert, B., Puschmann, A., Haase, J., and Bradshaw, A. M., (1988) Surface carbonate on Ag(110): An X-ray absorption fine structure study: Europhys. Lett. 5, 443448.CrossRefGoogle Scholar
Barrer, R. M., (1978) Zeolites and Clay Minerals as Sorbents and Molecular Sieves: Academic Press.Google Scholar
Berger, M. J., and Hubbell, J. H., (1993) in CRC Handbook of Chemistry and Physics: 74th Edition, Lide, D. R., ed., CRC Press, 10287.Google Scholar
Borja, M., and Dutta, P. K., (1992) Fatty acids in layered metal hydroxides; membrane-like structure and dynamics: J. Phys. Chem. 96, 54345444.CrossRefGoogle Scholar
Brindley, G. W., and Kikkawa, S., (1979) A crystal-chemical study of Mg,Al and Ni,Al hydroxy-perchlorates and hydroxy-carbonates: Amer. Mineral. 64, 836843.Google Scholar
Cairns-Smith, A. G., (1965) The origin of life and the nature of the primitive gene: J. Theoret. Biol. 10, 5388.CrossRefGoogle Scholar
Cairns-Smith, A. G., (1975) A case for alien ancestry: Proc. R. Soc. Lond. B 189, 249274.Google Scholar
Coulter, P. D., Hanna, S., and Windle, A. H., (1989) Parent homopolymers of liquid crystalline polyesters: Liquid Crystals 5 No. 5, 16031618.CrossRefGoogle Scholar
Cullity, B. D., (1978) Elements of X-ray Diffraction: 2nd ed. Addison-Wesley, 129131.Google Scholar
De Waal, S. A., and Viljoen, E. A., (1971) Nickel minerals from Barberton, South Africa. IV. Reevesite, a member of the Hydrotalcite group: Amer. Mineral. 56, 10771081.Google Scholar
Drezdon, M. A., (1988) Synthesis of isopolymetalate-pillared hyrotalcite via organic-anion-pillared precursors: Inorg. Chem. 27, 46284632.CrossRefGoogle Scholar
Frondel, C., (1941) Constitution and polymorphism of the pyroaurite and sjögrenite groups: J. Min. Soc. Am. 26(5), 295315.Google Scholar
Gastuche, M. C., Brown, G., and Mortland, M. M., (1967) Mixed magnesium-aluminium hydroxides: Clay Minerals 7, 177192.CrossRefGoogle Scholar
Hoffmann, H., Zaera, F., Ormerod, R. M., Lambert, R. M., Wang, L. P., and Tysoe, W. T., (1990) Discovery of a tilted form of benzene chemisorbed on Pd(111): A NEXAFS and photoemission investigation: Surf. Sci. 232, 259265.CrossRefGoogle Scholar
Horsley, J. A., Stöhr, J., Hitchcock, A. P., Newbury, D. C., Johnson, A. L., and Sette, F., (1985) Resonances in the K-shell excitation spectra of benzene and pyridine: Gasphase, solid and chemisorbed states: J. Chem. Phys. 83, 60996107.CrossRefGoogle Scholar
Johnson, A. L., Muetterties, E. L., and Stöhr, J., (1983) Orientation of complex molecules chemisorbed on metal surfaces: Near edge X-ray absorption studies: J. Am. Chem. Soc. 105, 71837185.CrossRefGoogle Scholar
Kuma, K., Paplawsky, W., Gedulin, B., and Arrhenius, G., (1989) Mixed valence hydroxides as bioorganic host minerals: Origins of Life and Evolution of the Biosphere 19, 573602.CrossRefGoogle ScholarPubMed
Liu, J., and Rybnikar, F., (1993) Crystal structure and transitions in nascent, lamellar polyoxybenzoate single crystals: J. Macromolecular Science—Physics 1932 No. 4, 395432.CrossRefGoogle Scholar
Madix, R. J., Solomon, J. L., and Stöhr, J., (1988) The orientation of the carbonate anion on Ag(110): Surf. Sci. 197, L253-L259.CrossRefGoogle Scholar
Miyata, S., (1975) The synthesis of hydrotalcite-like compounds and their structure and physico-chemical properties: Clays and Clay Minerals 23, 369375.CrossRefGoogle Scholar
Occelli, M. L., Landau, S. D., and Pinnavaia, T. J., (1984) Cracking selectivity of a delaminated clay catalyst: J. Catal. 90, 256260.CrossRefGoogle Scholar
Paecht-Horowitz, M., Berger, J., and Katchalsky, A., (1970) Prebiotic synthesis of polypeptides by heterogeneous polycondensation of amino-acid adenylates: Nature 228, 636639.CrossRefGoogle ScholarPubMed
Reichle, W. T., (1985) Catalytic reactions by thermally activated, synthetic, anionic clay minerals: J. Catal. 94, 547557.CrossRefGoogle Scholar
Serna, C. J., Rendon, J. L., and Iglesias, J. E., (1982) Crystal-chemical study of layered [Al2Li(OH)6]+X·nH2O: Clays and Clay Minerals 30(3), 180184.CrossRefGoogle Scholar
Solomon, J. L., Madix, R. J., and Stöhr, J., (1991) Orientation and absolute coverage of furan and 2,5-dihydrofuran on silver (110) determined by near edge X-ray absorption fine structure and X-ray photoelectron spectroscopy: J. Chem. Phys. 94(5), 40124023.CrossRefGoogle Scholar
Stöhr, J., (1992) NEXAFS Spectroscopy: Springer Verlag, Berlin, 403 pp.CrossRefGoogle Scholar
Taylor, H. F. W., (1969) Segregation and cation ordering in sjögrenite and pyroaurite: Min. Mag. 37(287), 338342.CrossRefGoogle Scholar
Taylor, H. F. W., (1973) Crystal structures of some double hydroxide minerals: Min. Mag. 39(304), 377389.CrossRefGoogle Scholar
Tourillon, G., Raaen, S., Skotheim, T. A., Sagurton, M., Garrett, R., and Williams, G. P., (1987) A near edge X-ray absorption fine structure study of the adsorption of pyrrole and N-methylpyrrole on Pt(111): Orientation and dissociation of the adsorbed molecules: Surf. Sci. 184, L345L354.CrossRefGoogle Scholar