Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T04:51:06.810Z Has data issue: false hasContentIssue false

New Template Effect in Hydrotalcite Synthesis. Nodular vs. Layered Morphologies

Published online by Cambridge University Press:  01 January 2024

Alicia E. Sommer
Affiliation:
Universidad Autónoma de Puebla, Facultad de Ciencias Químicas, Blvd. 14 Sur y Av. San Claudio, 72570 Puebla, PUE, Mexico
Geolar Fetter*
Affiliation:
Universidad Autónoma de Puebla, Facultad de Ciencias Químicas, Blvd. 14 Sur y Av. San Claudio, 72570 Puebla, PUE, Mexico
Pedro Bosch
Affiliation:
Universidad Nacional Autónoma de Mexico, Instituto de Investigaciones en Materiales, Ciudad Universitaria, 04510 Mexico, D.F., Mexico
Victor H. Lara
Affiliation:
Universidad Autónoma Metropolitana — Iztapalapa, Departamento de Química, Av. Michoacán esq. Purísima, 09340 México, D.F., Mexico
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The morphology of hydrotalcites determines their use in catalysis, biomedicine, or adsorption as they may work as anion exchangers or as drug deliverers. In catalysis, reagents need access to as much surface area as possible; in biomedicine, drugs have to be encapsulated. However, the parameters and the mechanisms which direct the synthesis towards a certain morphology are not well understood. Precipitating agents or crystallization conditions are expected to play a crucial role. In the present study, hydrotalcites were synthesized in the presence of two precipitating agents (NaOH or NH4OH) under three different crystallization conditions (conventional, microwave, or ultrasound irradiation) which determined the morphology of the final product, layered or vesicular. The features are explained through the template effect of the liberated gases on the co-precipitation and crystallization processes and consequently on the final structure/morphology of the synthesized solids. Indeed, the nodular particles crystallize using the effluent gases as templates. Fractal dimension and particle-size distributions, determined by small-angle X-ray scattering (SAXS) and gas adsorption are compared and correlated to the presence of ammonium. Although the materials obtained are heterogeneous, it is possible to propose a microscopic geode model.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2010

References

Allada, R.K. Peltier, E. Navrotsky, A. Casey, W.H. Johnson, C.A. Berbeco, H.T. and Sparks, D.L., 2006 Calorimetric determination of the enthalpies of formation of hydrotalcitelike solids and their use in the geochemical modeling of metals in natural waters Clays and Clay Minerals 54 409417 10.1346/CCMN.2006.0540401.CrossRefGoogle Scholar
Benito, P. Labajos, F.M. and Rives, V., 2006 Uniform fast growth of hydrotalcite-like compounds Crystal Growth Design 6 19611966 10.1021/cg0506222.CrossRefGoogle Scholar
Benito, P. Labajos, F.M. Rocha, J. and Rives, V., 2006 Influence of microwave radiation on the textural properties of layered double hydroxides Microporous and Mesoporous Materials 94 148158 10.1016/j.micromeso.2006.03.038.CrossRefGoogle Scholar
Cavani, F. Trifiro, F. and Vaccari, A., 1991 Hydrotalcitetype anionic clays: preparation, properties and applications Catalysis Today 11 173301 10.1016/0920-5861(91)80068-K.CrossRefGoogle Scholar
Cotton, F.A. and Wilkinson, G., 1988 Qulmica Inorgcinica Avanzada Mexico Limusa.Google Scholar
Evans, D.G. and Slade, R.C.T., 2006 Structural aspects of layered double hydroxides Structure and Bonding 119 187.Google Scholar
Glatter, O. and Gruber, K., 1993 Indirect transformation in reciprocal space: desmearing of small-angle scattering data from partially ordered systems Journal of Applied Crystallography 26 512518 10.1107/S0021889893000561.CrossRefGoogle Scholar
Glatter, O., 1998 Comparison of two different methods for direct structure analysis from small-angle scattering data Journal of Applied Crystallography 21 886890 10.1107/S0021889888007381.CrossRefGoogle Scholar
Harrison, A., 1995 Fractals in Chemistry New York Oxford University Press Inc..Google Scholar
He, J. Wei, M. Li, B. Kang, Y. Evans, D.G. and Duan, X., 2006 Preparation of layered double hydroxides Structure and Bonding 119 89119 10.1007/430_006.CrossRefGoogle Scholar
Hernandez-Moreno, M.J. Ulibarri, M.A. Rendon, J.L. and Serna, C.J., 1985 IR characteristics of hydrotalcite-like compounds Physics and Chemistry of Minerals 12 3438.CrossRefGoogle Scholar
Jaber, M. Gaslain, F.O.M. and Miehe-Brendle, J., 2009 Rapid and direct synthesis of spherical organoclay Clays and Clay Minerals 57 3539 10.1346/CCMN.2009.0570103.CrossRefGoogle Scholar
Kim, M.-H., 2004 Modified Porods law estimated of the transition-layer thickness between two phases: test of triangular smooting function Journal of Applied Crystallography 37 643651 10.1107/S0021889804013196.CrossRefGoogle Scholar
Lei, X. Yang, L. Zhang, F. and Duan, X., 2006 A novel gasliquid contacting route for the synthesis of layered double hydroxides by decomposition of ammonium carbonate Chemical Engineering Science 61 27302735 10.1016/j.ces.2005.11.053.CrossRefGoogle Scholar
Li, F. and Duan, X., 2006 Applications of layered double hydroxides Structure and Bonding 119 193223 10.1007/430_007.CrossRefGoogle Scholar
Lopez, T. Bosch, P. Ramos, E. Gomez, R. Novaro, O. Acosta, D. and Figueras, F., 1996 Synthesis and characterization of sol-gel hydrotalcites. Structure and texture Langmuir 12 189192 10.1021/la940703s.CrossRefGoogle Scholar
Lopez, T. Bosch, P. Asomoza, M. Gomez, R. and Ramos, E., 1997 DTA-TGA and FTIR spectroscopies of sol-gel hydrotalcites: aluminium source effect on physicochemical properties Materials Letters 31 311316 10.1016/S0167-577X(96)00296-0.CrossRefGoogle Scholar
Martin, J.E. and Hurd, A.J., 1987 Scattering from fractals Journal of Applied Crystallography 20 6178 10.1107/S0021889887087107.CrossRefGoogle Scholar
Méheust, Y. Dagois-Bohy, S. Knudsen, K.D. and Fossum, J.O., 2007 Mesoscopic structure of dry-pressed clay samples from small-angle X-ray scattering measurements Journal of Applied Crystallography 40 s286s291 10.1107/S0021889807008552.CrossRefGoogle Scholar
Olanrewaju, J. Newalkar, B.L. Mancino, C. and Komarneni, S., 2000 Simplified synthesis of nitrate form of layered double hydroxide Materials Letters 45 307310 10.1016/S0167-577X(00)00123-3.CrossRefGoogle Scholar
Paredes, S.P. Fetter, G. Bosch, P. and Bulbulian, S., 2006 Sol-gel synthesis of hydrotalcite-like compounds Journal of Materials Science 41 33773382 10.1007/s10853-005-5347-4.CrossRefGoogle Scholar
Pernyeszi, T. and Dekany, I., 2003 Surface fractal and structural properties of layered clay minerals monitored by small-angle X-ray scattering and low-temperature nitrogen adsorption experiments Colloid and Polymer Science 281 7378 10.1007/s00396-002-0758-0.CrossRefGoogle Scholar
Pretsch, E. Buhlmann, P. and Affolter, C., 2000 Structure Determination of Organic Compounds Zurich Springer 10.1007/978-3-662-04201-4.CrossRefGoogle Scholar
Rivera, J.A. Fetter, G. and Bosch, P., 2006 Microwave power effect on hydrotalcite synthesis Microporous and Mesoporous Materials 89 306314 10.1016/j.micromeso.2005.10.041.CrossRefGoogle Scholar
Rivera, J.A. Fetter, G. Giménez, Y. Xochipa, M.M. and Bosch, P., 2007 Nickel distribution in (Ni,Mg)/Al-layered double hydroxides Applied Catalysis A 316 207211 10.1016/j.apcata.2006.09.031.CrossRefGoogle Scholar
Rives, V. and Ulibarri, M.A., 1999 Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates Coordination Chemistry Reviews 181 61120 10.1016/S0010-8545(98)00216-1.CrossRefGoogle Scholar
Sampieri, A. Fetter, G. Pfeiffer, H. and Bosch, P., 2007 Carbonate phobic (Zn,Mn)-Al hydrotalcite-like compounds Solid State Sciences 9 394403 10.1016/j.solidstatesciences.2007.03.014.CrossRefGoogle Scholar
Sels, B.F. de Vos, D.E. and Jacobs, P.A., 2001 Hydrotalcitelike anionic clays in catalytic organic reactions Catalysis Reviews 43 443488 10.1081/CR-120001809.CrossRefGoogle Scholar
Tichit, D. and Vaccari, A., 1998 Recent catalytic applications of hydrotalcite-type anionic clays Applied Clay Science 13 311326 10.1016/S0169-1317(98)00035-0.Google Scholar
Valente, J.S. Cantú, M.S. Cortez, J.G.H. Montiel, R. Bokhimi, X. and López-Salinas, E., 2007 Preparation and characterization of sol-gel MgAl hydrotalcites with nanocapsular morphology Journal of Physical Chemistry C 111 642651 10.1021/jp065283h.CrossRefGoogle Scholar
Wang, Y. Zhang, F. Xu, S. Wang, X. Evans, D.G. and Duan, X., 2008 Preparation of layered double hydroxide microspheres by spray drying Industrial Engineering Chemistry Research 47 57465750 10.1021/ie800146m.CrossRefGoogle Scholar