Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-15T03:26:57.911Z Has data issue: false hasContentIssue false

A New Ni-Rich Stevensite From the Ophiolite Complex of Othrys, Central Greece

Published online by Cambridge University Press:  01 January 2024

George E. Christidis*
Affiliation:
Technical University of Crete, Department of Mineral Resources Engineering, 73100, Chania, Greece
Ioannis Mitsis
Affiliation:
Section of Geochemistry and Economic Geology, Department of Geology, University of Athens, Panepistimioupolis, Ano Ilisia 15784, Greece
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The first occurrence of Ni-rich stevensite found in the ophiolite complex of Othrys, Central Greece is described. The stevensite, which develops in cracks in a host serpentinite, formed at the expense of serpentine. Two varieties of stevensite have been described: a Mg-rich, Ni-poorer variety with 0.4–1.2 octahedral Ni atoms per half formula unit (p.h.f.u.) and a Ni-rich variety with >2 Ni atoms p.h.f.u. The layer charge in both varieties is −0.24 p.h.f.u.. Stevensite layers are completely separated when dispersed in dilute polyvinylpyrrolidone (PVP) solutions and begin to convert to talc after heating at 250°C for 90 min. Total conversion to talc is observed at 550°C. Formation of Ni-rich stevensite took place at ambient temperature during supergene processes. The scarcity of Ni-rich stevensite occurrences in nature is attributed to the metastability of smectite and to the analytical procedures used in previous studies. Stevensite is considered a phase containing domains with variable numbers of octahedral vacancies. A new experimental protocol is proposed for the determination of Ni-rich stevensite, based on a combination of XRD after solvation with various organic liquids and subsequent heating at 750°C.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

References

Alt, J.C., Frey, M. and Robinson, D., (1999) Very low-grade hydrothermal metamorphism of basic igneous rocks Low-grade Metamorphism Oxford, UK Blackwell Science 169201.Google Scholar
Bailey, S.W., (1980) Summary of recommendations of AIPEA nomenclature committee on clay minerals American Mineralogist 65 17.Google Scholar
Beaufort, D. and Meunier, A., (1994) Saponite, corrensite and chlorite-saponite mixed-layers in the Sancerre-Couy deep drill-hole (France) Clay Minerals 29 4761 10.1180/claymin.1994.029.1.06.CrossRefGoogle Scholar
Besson, G. Drits, V.A. Daynyak, L.G. and Smoliar, B.B., (1987) Analysis of cation distribution in dioctahedral micaceous minerals on the basis of IR spectroscopy data Clay Minerals 22 465478 10.1180/claymin.1987.022.4.10.CrossRefGoogle Scholar
Blum, A.E. and Eberl, D.D., (2004) Measurement of clay surface areas by polyvinylpyrrolidone (PVP) sorption and its use for quantifying illite and smectite abundance Clays and Clay Minerals 52 589602 10.1346/CCMN.2004.0520505.CrossRefGoogle Scholar
Bodine, M.W. Jr. Madsen, B.M., Schultz, L.G. van Olphen, H. and Mumpton, F.A., (1987) Mixed layer chlorite/smectites from a Pennsylvanian evaporate cycle, Grand County, Utah Proceedings of the International Clay Conference, Denver Bloomington, Indiana The Clay Minerals Society 8593.Google Scholar
Bosio, N.J. Hurst, V.J. and Smith, R.L., (1975) Nickeliferous nontronite, a 15 Å garnierite, at Niquelandia, Goias, Brazil Clays and Clay Minerals 23 400403 10.1346/CCMN.1975.0230513.CrossRefGoogle Scholar
Brigatti, M.F., (1983) Relationships between composition and structure in Fe-rich smectites Clay Minerals 18 177186 10.1180/claymin.1983.018.2.06.CrossRefGoogle Scholar
Brindley, G.W. and Hang, P.T., (1973) The nature of garnierites — I structures, chemical compositions and color characteristics Clays and Clay Minerals 21 2740 10.1346/CCMN.1973.0210106.CrossRefGoogle Scholar
Brindley, G.W. and Maksimovic, Z., (1974) The nature and nomenclature of hydrous nickel-containing silicates Clay Minerals 10 271277 10.1180/claymin.1974.010.4.05.CrossRefGoogle Scholar
Brindley, G.W. and Souza, J.V., (1975) Nickel-containing montmorillonites and chlorites from Brazil, with remarks on schuchardite Mineralogical Magazine 40 141152 10.1180/minmag.1975.040.310.04.CrossRefGoogle Scholar
Brindley, G.W. Bish, D.L. and Wan, H.-M., (1977) The nature of kerolite, its relation to talc and stevensite Mineralogical Magazine 41 443452 10.1180/minmag.1977.041.320.04.CrossRefGoogle Scholar
Brindley, G.W. Bish, D.L. and Wan, H.-M., (1979) Compositions, structures and properties of nickel-containing minerals in the kerolite-pimelite series American Mineralogist 64 615625.Google Scholar
Chamley, H., (1989) Clay Sedimentology Berlin Springer Verlag 10.1007/978-3-642-85916-8 623 pp.CrossRefGoogle Scholar
Christidis, G.E., (2001) Formation and growth of smectites in bentonites: a case study from Kimolos Island, Aegean, Greece Clays and Clay Minerals 49 204215 10.1346/CCMN.2001.0490303.CrossRefGoogle Scholar
Christidis, G.E. and Dunham, A.C., (1993) Compositional variations in smectites: Part I. Alteration of intermediate volcanic rocks. A case study from Milos Island, Greece Clay Minerals 28 255273 10.1180/claymin.1993.028.2.07.CrossRefGoogle Scholar
Christidis, G. and Dunham, A.C., (1997) Compositional variations in smectites: Part II. Alteration of acidic precursors. A case study from Milos Island, Greece Clay Minerals 32 253270 10.1180/claymin.1997.032.2.07.CrossRefGoogle Scholar
Courtin, B., (1979) Etude geologique de la region de Domokos (Grece): le front des zones internes et les massifs ophiolitiques d’Othris occidentale These 3e cycle France Université de Lille.Google Scholar
Decarreau, A., (1985) Partition of divalent transition elements between octahedral sheets of trioctahedral smectites and water Geochimica et Cosmochimica Acta 49 15371544 10.1016/0016-7037(85)90258-3.CrossRefGoogle Scholar
Decarreau, A. Colin, F. Herbillon, A. Manceau, A. Nahon, D. Paquet, H. Trauth-Badeaud, D. and Trescases, J.J., (1987) Domain segregation in Ni-Fe-Mg-smectites Clays and Clay Minerals 35 110 10.1346/CCMN.1987.0350101.CrossRefGoogle Scholar
Dijkstra, A. Drury, M. and Vissers, R., (2001) Structural petrology of plagioclase peridotites in the West Othrys Mountains (Greece): melt impregnation in mantle lithosphere Journal of Petrology 42 524 10.1093/petrology/42.1.5.CrossRefGoogle Scholar
Dubinska, E., (1986) Nickel-bearing ferric analogue of montmorillonite from weathering crust at Szklary near Zabkowice Slaskie (Lower Silesia) Archiwum Mineralogiczne 41 3547.Google Scholar
Dunham, A.C. and Wilkinson, F.C.F., (1978) Accuracy, precision and detection limits of energy-dispersive electron microprobe analysis of silicates X-ray Spectrometry 7 5056 10.1002/xrs.1300070203.CrossRefGoogle Scholar
Eberl, D.D. Jones, B.F. and Khoury, H.N., (1982) Mixed-layer kerolite/stevensite from the Amargosa Desert, Nevada Clays and Clay Minerals 30 321326 10.1346/CCMN.1982.0300501.CrossRefGoogle Scholar
Eberl, D.D. Nuesch, R. Sucha, V. and Tsipursky, S., (1998) Measurement of fundamental particle thicknesses by X-ray diffraction using PVP-10 intercalation Clays and Clay Minerals 46 8997 10.1346/CCMN.1998.0460110.CrossRefGoogle Scholar
Gaudin, A. Grauby, O. Noack, N. Decarreau, A. and Petit, S., (2004) Accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). I. XRD and multi-scale chemical approaches Clay Minerals 39 301315 10.1180/0009855043930136.CrossRefGoogle Scholar
Gaudin, A. Petit, S. Rose, J. Martin, F. Decarreau, A. Noack, N. and Borschneck, D., (2004) The accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). II. Spectroscopic (IR and EXAFS) approaches Clay Minerals 39 453467 10.1180/0009855043940147.CrossRefGoogle Scholar
Gerard, P. and Herbillon, A.J., (1983) Infrared studies of Ni-bearing clay minerals of the kerolite-pimelite series Clays and Clay Minerals 31 143151 10.1346/CCMN.1983.0310209.CrossRefGoogle Scholar
Grim, R.E. and Güven, N., (1978) Bentonites. Geology, Mineralogy, Properties and Uses Amsterdam Elsevier 143155.Google Scholar
Golightly, J.P. (1981) Nickeliferous Laterite Deposits. Economic Geology, 75th Anniversary Volume, pp. 710735.CrossRefGoogle Scholar
Güven, N. and Bailey, S.W., (1988) Smectite Hydrous Phyllosilicates Washington, D.C Mineralogical Society of America 497559 10.1515/9781501508998-018.CrossRefGoogle Scholar
Herbillon, A.J. Frankart, R. and Vielvoye, L., (1981) An occurrence of interstratified kaolinite-smectite minerals in a red-black soil toposequence Clay Minerals 16 195201 10.1180/claymin.1981.016.2.07.CrossRefGoogle Scholar
Hynes, A., (1972) The geology of part of the western Othrys Mountain, Greece UK University of Cambridge.Google Scholar
Inoue, A. Meunier, A. and Beaufort, A., (2004) Illite-smectite mixed-layer minerals in felsic volcaniclastic rocks from drill cores, Kakkonda, Japan Clays and Clay Minerals 52 6684 10.1346/CCMN.2004.0520108.CrossRefGoogle Scholar
Jones, B.F. and Weir, A.H., (1983) Clay minerals of Lake Albert, an alkaline, saline lake Clays and Clay Minerals 31 161172 10.1346/CCMN.1983.0310301.CrossRefGoogle Scholar
Konstantopoulou, G. and Rassios, A. (1993) Application in the Othrys area. Pp. 96102 in: Advanced Tectonic and Geochemical Methods for Chrome Exploration in Ophiolites. Contract MA2M-CT90-0035, Final Technical Report.Google Scholar
Köster, H.M. (1982) The crystal structure of 2:1 layer silicates. Pp. 4171 in: Proceedings of the International Clay Conference, Pavia, Italy (Olphen, H. van and Veniale, F., editors).Google Scholar
Lippmann, F. (1982) The thermodynamic status of clay minerals. Pp. 475485 in: Proceedings of the International Clay Conference, Pavia, Italy (Olphen, H. van and Veniale, F., editors).Google Scholar
Manceau, E. and Calas, G., (1986) Nickel-bearing clay minerals: II. Intracrystalline distribution of nickel: an X-ray absorption study Clay Minerals 21 341360 10.1180/claymin.1986.021.3.07.CrossRefGoogle Scholar
Manceau, A. Calas, G. and Decarreau, A., (1985) Nickel-bearing clay minerals: I. Optical spectroscopic study of nickel crystal chemistry Clay Minerals 20 367387 10.1180/claymin.1985.020.3.08.CrossRefGoogle Scholar
May, H.M. Kinniburgh, D.G. Helmke, P.A. and Jackson, M.L., (1986) Aqueous dissolution, solubilities and thermodynamic stabilities of common aluminosilicate clay minerals; kaolinite and smectite Geochimica et Cosmochimica Acta 50 16671677 10.1016/0016-7037(86)90129-8.CrossRefGoogle Scholar
Menzies, M., (1973) Mineralogy and partial melt textures within an ultramafic-mafic body, Greece Contributions to Mineralogy and Petrology 43 273285 10.1007/BF00372606.CrossRefGoogle Scholar
Mitsis, I., (2001) Mineralization of nickel minerals, magnetite and apatite in the Ano Agoriani region, Othrys, Greece Greece University of Athens (in Greek).Google Scholar
Mitsis, I. and Economou-Eliopoulos, M., (2001) Occurrence of apatite associated with magnetite in an ophiolite complex (Othrys), Greece American Mineralogist 86 11431150 10.2138/am-2001-1003.CrossRefGoogle Scholar
Nahon, D. Colin, F. and Tardy, Y., (1982) Formation and distribution of Mg, Fe, Mn-smectites in the first stages of the lateritic weathering of forsterite and tephroite Clay Minerals 17 339348 10.1180/claymin.1982.017.3.06.CrossRefGoogle Scholar
Nisbet, E., (1974) The geology of the Neraida area, Othrys Mountains, Greece UK University of Cambridge.Google Scholar
Paquet, H., Duplay, J. and Nahon, D. (1982) Variations in the composition of phyllosilicates monoparticles in a weathering profile of ultrabasic rocks. Pp. 595603 in: Proceedings of the International Clay Conference, Pavia, Italy (Olphen, H. van and Veniale, F., editors).Google Scholar
Reynolds, R.C. Jr. Reynolds, R.C. III, (1996) Newmod-for-Windows. The calculation of one-dimensional X-ray diffraction patterns of mixed-layered clay minerals Hanover, New Hampshire, USA Published by the authors.Google Scholar
Russell, J.D. and Wilson, M.J., (1987) Infrared methods A Handbook of Determinative Methods in Clay Mineralogy Glasgow and London Blackie 133173.Google Scholar
Sakharov, B. Dubinska, E. Bylina, P. Kozubowski, J.A. Kapron, G. and Frontczak-Banewicz, M., (2004) Serpentine-smectite interstratified minerals from Lower Silesia (SW Poland) Clays and Clay Minerals 52 5565 10.1346/CCMN.2004.0520107.CrossRefGoogle Scholar
Shimoda, S., (1971) Mineralogical studies of a species of stevensite from the Obori mine, Yamagata Prefecture, Japan Clay Minerals 9 185192 10.1180/claymin.1971.009.2.04.CrossRefGoogle Scholar
Slonimskaya, M.V. Besson, G. Dainyak, L.G. Tchoubar, C. and Drits, V., (1986) Interpretation of the IR spectra of celadonites and glauconites in the region of OH-stretching frequencies Clay Minerals 21 377388 10.1180/claymin.1986.021.3.09.CrossRefGoogle Scholar
Środoń, J. Eberl, D.D. and Bailey, S.W., (1984) Illite Micas Washington, D.C Mineralogical Society of America 495544 10.1515/9781501508820-016.CrossRefGoogle Scholar
Wiéwióra, A., Dubinska, E. and Iwasinska, I. (1982) Mixed-layering in Ni-containing talc-like minerals from Szklary, Lower Silesia, Poland. Pp. 111125 in: Proceedings of the International Clay Conference, Pavia, Italy (Olphen, H. van and Veniale, F., editors).Google Scholar
Wilkins, R.W.T. and Ito, J., (1967) Infrared spectra of some synthetic talcs American Mineralogist 52 16491661.Google Scholar
Wilson, M.J., Schultz, L.G. van Olphen, H. and Mumpton, F.A., (1987) Soil smectites and related interstratified minerals: Recent developments Proceedings of the International Clay Conference Denver Bloomington, Indiana The Clay Minerals Society 167173.Google Scholar
Zhou, Z. and Fyfe, W.S., (1989) Palagonization of basaltic glass of DSPD Site 335, Leg 37: Textures, chemical composition and mechanism of formation American Mineralogist 74 10451053.Google Scholar