Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T02:28:17.442Z Has data issue: false hasContentIssue false

New Members of the Hydrotalcite-Manasseite Group

Published online by Cambridge University Press:  02 April 2024

V. A. Drits
Affiliation:
Geological Institute of the U.S.S.R. Academy of Sciences, Pyzhevsky 7, Moscow, U.S.S.R.
T. N. Sokolova
Affiliation:
Geological Institute of the U.S.S.R. Academy of Sciences, Pyzhevsky 7, Moscow, U.S.S.R.
G. V. Sokolova
Affiliation:
Geological Institute of the U.S.S.R. Academy of Sciences, Pyzhevsky 7, Moscow, U.S.S.R.
V. I. Cherkashin
Affiliation:
Geological Institute of the U.S.S.R. Academy of Sciences, Pyzhevsky 7, Moscow, U.S.S.R.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Several new minerals, structurally and chemically similar to the hydrotalcite-manasseite group, have been found in the saline deposits of the central pre-Caspian depression and in those of Middle Asia. Their structures consist of layers of (Mg1-xAlx)(OH)2 plus interlayers of anions and molecular water. In addition to manasseite itself, [(Mg4Al2)(OH)12][(CO3)-3H2O], having unit-cell parameters of a = 3.042, c = 2 × 7.56= 15.12 Å and a calculated density of Dc = 2.15 g/cm3, other varieties were identified whose interlayers contain alternately SO42− or SO42− and CO32− anions. The following new phases were recognized: (1) an 8.85-Å phase having the composition [(Mg4Al2)(OH)12][(SO4)·3H2O], subcell dimensions of a' = 3.04, c' = 8.85 Å, and Dc = 1.96 g/cm3; (2) an 11-Å phase having the composition [(Mg3.96Fe0.06Al1.98)(OH)12][Na0.56(SO4)1.30·7.3H2O], hexagonal unit-cell parameters of a = √3 · 3.042 = 5.28 Å, c = 11.16 Å, and Dc = 1.90 g/cm3; (3) a 16.5-Å mixed-layer phase having the composition [(Mg4Al2)(OH)12][(SO4)0.5(CO3)0.5·3H2O] and an ordered ABAB... alternation of 7.56-Å layers (i.e., a brucite-like layer + a CO32−-containing interlayer) and 8.94-Å layers containing SO42− anions in interlayers; this phase has unit-cell dimensions of a' = 3.05, c' = 16.5 Å and Dc = 2.06 g/cm3; and (4) an 18.5-Å ordered mixed-layer phase having the ideal composition [(Mg8Al4)(OH)24][M+0.5(SO4)1.25(CO3)1.0·9H2O] and an alternation of 7.56-Å, CO3-containing layers and 11-Å layers having SO42− anions and Na and Mg cations in interlayers (M+0.5 corresponds to interlayer cations). This last phase has unit-cell dimensions of a = 3.046, c = 3 × 18.54 = 55.62 Å and Dc = 1.99 g/cm3. Some of the varieties containing SO42− in the interlayers swelled with ethylene glycol or glycerol.

For this diverse family of minerals whose structures are based on brucite-like layers of the composition (R2+1-xR3+x)(OH)2, a unifying system of nomenclature is offered for consideration. In describing these brucite-like structures intercalated with anion- and cation-containing interlayers, the composition of the hydroxide sheet and the interlayers, the periodicity of the layers, and the mixed-layer nature of the material should be described. By means of symbols, a single term might be used to describe the crystal chemistry of any member of the group having a given cation composition for the brucite-like layers, for example, manasseite, a 2H polytype of hydrotalcite that has a repeat distance of 7.56 Å and CO3-containing interlayers, might be designated as 7.56-Å CO3-hydrotalcite-2H.

Резюме

Резюме

В соленосных отложениях центральной части Прикаспийской впадины и Средней Азии обнаружен ряд новых минералов, структурно близких к минералам группы гидроталькит-манассеита. Основу структур этих минералов составляют положительно заряженные бруситоподобные слои со-тава (Mg1-xAlx)(OH)2, между которыми располагаются анионы и молекулы воды. Помимо собственно манассеита состава [(Mg4Al2)(OH)12][(CO3)·3H2O] с параметрами элементарной ячейки a = 3.042, с = 2 × 7.56 = 15.12 Å и рассчитанной плотностью (Dp) = 2.15 г/см3, установлены следующие разновид¬ности, межслоевые промежутки которых содержат анионы SO42− или SO42− и СО32−: (1) 8.85-Å фаза состава [(Мg4Аl2)(ОН)12][(SO4)·3Н2O] с параметрами a' = 3.04, с' = 8.85 Å и Dp = 1.96 г/см3; (2) 11-Å фаза состава [(Mg3.96Fe0.06Al0.98)(OH)12][Na0.56(SO4)1.30·7.3H2O] с параметрами гексагональной ячейки a = √3 × 3.042 = 5.28, с = 11.16 0А, и Dp = 1.90 г/см3; (3) 16.5-Å смешанослойная фаза состава [(Mg4Al2)(OH)12][(SO4)0.5(CO3)0.5·3H2O], в которой упорядоченно по закону АВАВ... чередуются 7.56-Å слои (бруситиподобный слой + СО3-содержащий межслой) и 8.94-Å слои с анионами SO42−в межслоях; параметры элементарной ячейки a' = 3.05, с' = 16.5 Å, и Dp = 2.06 г/см3; (4) 18.5-Å упорядоченная смешанослойная фаза состава [(MggAl4)(OH)24][M+0.5(SO4)1.25(СО3)1.0·9Н2О], в которой по закону АВАВ... чередуются 7.56-Å, СО3-содержащие слои и 11-Å слои, содержащие анионы SO4 и катионы Na и Mg в межслоях (М+0.5 соответствует межслоевому катиону). Параметры элементарной ячейки этой фазы a = 3.046, с = 3 × 18.54 = 55.62 Å, и Dp= 1.99. Некоторые разновидности, содер¬жащие в межслоях анионы SO4, обладают способностью к внутрикристаллическому набуханию при обработке их этиленгликолем и глицерином.

Предлагается унифицированная система номенклатуры для всего многообразного семейства ми¬нералов, основу структур которых составляют слои состава (R2+1-xR3+x)(OH)2. Для обозначения этих бруситоподобных структур, интеркалированных межслоевыми анионами и катионами, необходимо указать состав гидроокисных слоев и межслоев, период повторяемости слоев, смешанослойную при¬роду минерала. На основании предлагаемой символики можно использовать только одно наимено¬вание, чтобы описать любой член группы, имеющий данный состав бруситоподобных слоев. Напри¬мер, манассеит-2H, помимо гидроталькита, который имеет период повторяемости 7.56 Å и СO3-содержащие межслои, может быть обозначен как 7.56-Å СO3-гидроталькит-2H.

Type
Research Article
Copyright
Copyright © 1987, The Clay Minerals Society

References

Allmann, R., 1968 The crystal structure of pyroaurite Acta Crystallogr. 24 972977.CrossRefGoogle Scholar
Allmann, R., 1969 Nachtrag zu den Strukturen des Py-roaurits und Sjögrenits Neues Jahrb. Miner. Monatsh. 12 552558.Google Scholar
Allmann, R., 1977 Refinement of the hybrid layer structure [Ca2Al(OH)6] + [½SO4-3H2O]- Neues Jahrb. Miner. Monatsh. 3 136144.Google Scholar
Allmann, R. and Jepsen, H. P., 1969 Die Struktur des Hydrotalkits Neues Jahrb. Miner. Monatsh. 12 544551.Google Scholar
Allmann, R. and Lohse, H., 1966 Die Kristallstruktur des Sjögrenits und eines Umwandlungsproduktes des Koene-nits (= Chlor-Manasseits) Neues Jahrb. Miner. Monatsh 6 161181.Google Scholar
Allmann, R., Lohse, H. and Hellner, E., 1968 Die Kristallstruktur des Koenenits Z. Kristallogr. 126 722.CrossRefGoogle Scholar
Aminoff, G. and Broome, B., 1930 Contribution to the knowledge of the mineral pyroaurite Kungl. Svenska. Ve-tenskaps. Handel. 9 2337.Google Scholar
Bish, D. L., 1978 Anion exchange in takovite Bull. Bur. Rech. Geol. Minières 3 293301.Google Scholar
Bish, D. L., 1980 Anion exchange in takovite: Applications to other hydroxide minerals Bull. Mineral. 103 170175.Google Scholar
Bish, D. L. and Brindley, G. W., 1977 A reinvestigation of takovite, a nickel aluminum hydroxy-carbonate of the pyroaurite group Amer. Mineral. 62 458464.Google Scholar
Bish, D. L. and Livingstone, A., 1981 The crystal chemistry and paragenesis of honessite and hydrohonessite: The sulphate analogues of reevesite Miner. Mag. 44 339343.CrossRefGoogle Scholar
Brindley, G. W., 1979 Motukoreaite—Additional data and comparison with related minerals Miner. Mag. 43 337340.CrossRefGoogle Scholar
Calanchi, N., 1978 Reevesite nelle idrotermaliti di Ca de Lardi (Appennino Bolognese) primo ritrovamento del mi-nirale in Italia Miner. Petrogr. Acta 22 179183.Google Scholar
C’erný, P., 1963 Hydrotalkit z Vĕžné na zapadni Moravĕ Gasop. Moravs. Musea. Acta Musei Moraviae, Vĕdy Přirod. 48 2330.Google Scholar
Croviesier, J. H., Thomassin, J. H., Juteau, T., Eberhart, J. P., Touray, J. C. and Baillif, P., 1983 Experimental sea-water-basaltic glass interaction at 50°C: Study of early developed phases by electron microscopy and X-ray photo-electron spectrometry Geochim. Cosmochim. Acta 47 377387.CrossRefGoogle Scholar
DeWaal, S. A. and Viljoen, E. A., 1971 Nickel minerals from Barberton, South Africa: IV. Reevesite, a member of the hydrotalcite group Amer. Mineral. 56 10071081.Google Scholar
Drits, V. A. and Sakharov, B. A., 1976 X-ray study of mixed-layer minerals .Google Scholar
Dunn, J., Peacor, D. R. and Palmer, T. D., 1979 Desau-telsite, a new mineral of the pyroaurite group Amer. Mineral. 64 127130.Google Scholar
Feoktistov, G. D., Ivanov, S. I., Kashaev, A. A., Klyuchansky, L. N., Taskina, N. G. and Uschapovskaya, Z. F., 1978 On chlormanasseite discovery in the U.S.S.R. Zapiski Vses. Mineral. Obshchestva 3 321325.Google Scholar
Frondel, C., 1941 Constitution and polymorphism of the pyraurite and sjögrenite groups Amer. Mineral. 26 295315.Google Scholar
Heyl, A. V., Milton, C. and Axelrod, J. M., 1959 Nickel minerals from near Linden, Iowa County, Wisconsin Amer. Mineral. 44 9951009.Google Scholar
Hudson, D. R. and Bussell, M., 1981 Mountkeithite, a new pyroaurite-related mineral with an expanded interlayer containing exchangeable MgSO4 Miner. Mag. 44 345350.CrossRefGoogle Scholar
Ingram, L. and Taylor, H. F. W., 1967 The crystal structures of sjögrenite and pyroaurite Miner. Mag. 36 465479.Google Scholar
Ivanova, V. A. and Moskaleva, V. N., 1970 On diagnostics of the hydrotalcite minerals in serpentinites with thermal analysis Thermoanalytic Studies in Modern Mineralogy .Google Scholar
Jambor, J. L., 1969 Coalingite from the Muskox intrusion, Northwest Territories Amer. Mineral. 54 437447.Google Scholar
Kashaev, A. A., Feoktistov, G. D. and Petrova, S. V., 1982 Chlormagaluminite-(Mg,Fe2+)4Al2(OH)12(Cl,½C03)2. 2H2O—A new mineral of the manasseite-sjögrenite group Zapiski Vses. Mineralog. Obshchestva 1 121127.Google Scholar
Katz, M Ya and Dolgopolskaya, E. F., 1979 Quantitative analysis of heterogeneous minerals with 5–50 µm grains with stepwise density-change technique Litol. Polez. Iskop. 6 144150.Google Scholar
Kohls, D. W. and Rodda, J. L., 1967 Iowaite, a new hydrous magnesium hydroxide-ferric oxychloride from the Precam-brian of Iowa Amer. Mineral. 52 12611271.Google Scholar
Koritnig, S. and Süsse, P., 1975 Meixnerit, Mg6Al2(OH)18-4H2O, ein neues Magnesium-Aluminium-Hydroxid-Mineral Tscherm. Mineral. Petr. Mitt. 22 7987.CrossRefGoogle Scholar
Kurnakov, N. S. and Chemykh, V. V., 1926 Physico-chemical investigation of hydrotalcite and pyroaurite Zapiski Rossiysk. Mineral. Obshch. 55 118125.Google Scholar
Kuzel, H.-J., 1966 Röntgenuntersuchung im System 3 CaO-Al2O3 CaSO4 nH2O-3CaO • Al2O3 • CaCl2 • nH2O-H2O Neues Jahrb. Miner. Monatsh. 7 193200.Google Scholar
Kühn, R., 1951 Zur Kenntnis des Koenenits Neues Jahrb. Miner. Monatsh. 1 116.Google Scholar
Kühn, R., 1961 Die chemische Zuzammensetzung des Koenenits nebst Bemerkungen über sein Vorkommen und über Faserkoenenit Neues Jahrb. Miner. Abh. 97 112141.Google Scholar
Lisitzina, N. A. and Drits, V. A., 1985 Secondary minerals of low-temperature alteration of volcano-sedimentary rocks overlying Atlantic submarine mount basalts Litol. Polez. Iskop. 6 2039.Google Scholar
Maksimović, Z., 1957 Takovite, hydrous nickel aluminate, a new mineral C. R. Geol. Soc. Serbia 1955 219224.Google Scholar
Maksimović, Z., 1968 The properties and genesis of takovite Symp, on the Structure, Genesis, and Properties of Clays and other Silicate Raw Materials, Zagreb 1215.Google Scholar
Maksimović, Z., 1970 Features and genesis of takovite Zapiski Vses. Mineral. Obshchestva 99 595600.Google Scholar
Maksimović, Z. and Konta, J., 1974 Nickel clay minerals in some laterites, bauxites, and oolitic iron ores 6th Conf. Clay Mineral. Petrol., Prague, 1973 Prague Univ. Carolinae 119134.Google Scholar
Metz, W. and Hohlwein, D., 1975 Characterisierung von graphite-FeCl3-verbindungen als teilweise geordnete Schichtstrukturen Carbon 13 8796.CrossRefGoogle Scholar
Miyata, S., 1975 The synthesis of hydrotalcite-like compounds and their structures and physico-chemical proper-ties-I: The systems Mg2+-Al3+-NO3-, Mg2+-Al3+-Cl, Mg2+-Al3+-ClO4-, Ni2+-Al3+-Cl, and Zn2+-Al3+-Cl Clays & Clay Minerals 23 369375.CrossRefGoogle Scholar
Miyata, S., 1980 Physico-chemical properties of synthetic hydrotalcites in relation to composition Clays & Clay Minerals 28 5056.CrossRefGoogle Scholar
Miyata, S., 1983 Anion-exchange properties of hydrotalcite-like compounds Clays & Clay Minerals 31 305311.CrossRefGoogle Scholar
Miyata, S. and Okada, A., 1977 Synthesis of hydrotalcite-like compounds and their physico-chemical properties— The systems Mg2+-Al3+-SO4 2− and Mg2+-Al3+-CrO4 2− Clays & Clay Minerals 25 1418.CrossRefGoogle Scholar
Moore, P. B., 1971 Wermlandite, a new mineral from Lång-ban, Sweden Lithos 4 213217.CrossRefGoogle Scholar
Mumpton, F. A., Jaffe, H. W. and Thompson, C. S., 1965 Coalingite, a new mineral from the New Idria serpentinite, Fresno and San Benito counties, California Amer. Mineral. 50 18931913.Google Scholar
Nickel, E.H., 1976 New data on woodwardite Miner. Mag. 40 644647.CrossRefGoogle Scholar
Nickel, E. H. and Clark, R. M., 1976 Carrboydite, a hy-drated sulfate of nickel and aluminum: A new mineral from Western Australia Amer. Mineral. 61 366372.Google Scholar
Nickel, E. H., Davis, C. E. S. Bussell, M., Bridge, P. J., Dunn, J. G. and MacDonald, R. D., 1977 Eardleyite as a product of the supergene alteration of nickel sulfides in Western Australia Amer. Mineral. 62 449457.Google Scholar
Nickel, E. H. and Wildman, J. E., 1981 Hydrohonessite-A new hydrated Ni-Fe hydroxy-sulphate mineral: Its relationship to honessite, carrboydite, and minerals of the pyroaurite group Miner. Mag. 44 333337.CrossRefGoogle Scholar
Pastor-Rodriguez, J. and Taylor, H. F. W., 1971 Crystal structure of coalingite Miner. Mag. 38 286294.CrossRefGoogle Scholar
Read, H. H. and Dixon, B. E., 1933 On stichtite from Cunnigsburgh, Shetland Islands Miner. Mag. 23 309316.Google Scholar
Rius, J. and Allmann, R., 1978 Die Struktur des Werm-landits, [Mg7(Al,Fe)2(OH)18]2+[Ca(H2O)6 · 2SO4 · 6H2O]2− Fortschr. Mineral. 56 113114.Google Scholar
Rius, J. and Allmann, R., 1984 The superstructure of the double layer mineral wermlandite [Mg7(Al0.57Fe3+ 0.43)2 (OH)18]2+[(Ca0.6Mg0.4)(SO4)2(H2O)12]2− Z. Kristallogr. 168 133144.CrossRefGoogle Scholar
Rodgers, K. A., Chisholm, J. E., Davis, R. J. and Nelson, C. S., 1977 Motukoreaite, a new hydrated carbonate, sulphate, and hydroxide of Mg and Al from Auckland, New Zealand Miner. Mag. 41 389390.CrossRefGoogle Scholar
Scaini, G., Passaglia, E. and Capedri, S., 1967 Hydrotalcite di Tonezza (Vicenza) Period. Mineral. 36 95102.Google Scholar
Tatarinov, A. V., Sapozhnikov, A. N., Prokudin, S. G. and Frolova, L. P., 1985 Stichtite in serpentinites of the Te-rektinsky Ridge (Altay) Zapiski Vses. Mineral. Obshchestva 114 575581.Google Scholar
Taylor, H. F. W., 1969 Segregation and cation-ordering in sjögrenite and pyroaurite Miner. Mag. 37 338342.CrossRefGoogle Scholar
Taylor, H. F. W., 1973 Crystal structures of some double hydroxide minerals Miner. Mag. 39 377389.CrossRefGoogle Scholar
Thomassin, J. H. and Touray, J.-C., 1979 Etude des premiers Stades de’interaction eau-verre basaltique: Données de la spectrométrie de photoélectrons (XPS) et de la mi-croscopie électronique à balayage Bull. Minéral. 102 594599.CrossRefGoogle Scholar
Thomassin, J.-H. and Touray, J.-C., 1982 L’hydrotalcite, un hydroxy-carbonate transitoire précocement formé lors de l’interaction verre basaltique-eau de mer Bull. Minéral. 105 312319.CrossRefGoogle Scholar
Ulrych, J., 1966 Stichtite from serpentinite at Slatinka near Letoviche, Moravia Casopis Mineral. Geol. 11 311315.Google Scholar
Wardlaw, N. C. and Schwerdtner, W., 1963 Koenenit from Saskatchewan, Canada Neues Jahrb. Geol. Paläontol. Mo-natsh. 2 7677.Google Scholar
White, J. S., Henderson, E. P. and Mason, B., 1967 Secondary minerals produced by weathering of the Wolf Creek meteorite Amer. Mineral. 52 11901197.Google Scholar
Wilson, M. J., Cradwick, P. D., Berrow, M. L., McHardy, W. J. and Russell, J. D., 1976 Nickeloan pyroaurite from Leslie, Aberdeenshire Miner. Mag. 40 447451.CrossRefGoogle Scholar