Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T00:46:51.300Z Has data issue: false hasContentIssue false

A Natural Clay Organic Complex from Andalusian Black Earth

Published online by Cambridge University Press:  01 July 2024

J. L. Perez Rodriguez
Affiliation:
Centro de Edafologia y Biologia Aplicada de Cuarto, Bellavista, Spain
Armin Weiss
Affiliation:
Institut für Anorganische Chemie der Universität München, München, Germany
Gerhard Lagaly*
Affiliation:
Institut für Anorganische Chemie der Universität Kiel, Kiel, Germany
*
*Requests for reprints to: Prof. Dr. Gerhard Lagaly, Institut für Anorganische Chemie der Universität Kiel, Olshausenstraße 40/60, 23, Kiel, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Protein complexes of smectites in soils are difficult to detect if the usual smectite tests show no peculiarities. Andalusian black earths are typical examples. Investigation of the alkylam-monium derivatives, however, allows detection of adhered macromolecules which might be protein-like although this cannot be proved exactly.

Investigation of artificial clay-protein complexes reveals different types of clay protein interactions. Calcium smectites adsorb proteins mainly on the external surfaces, the macromolecules being anchored in the interlayer spaces. Sodium smectites give partial crystalline products in which the silicate layers are distributed in the protein matrix.

Exchange of alkylammonium ions can be used as a tool for detection of the protein. If this is adsorbed on external surfaces (calcium smectites) the increased layer separation during the cation exchange enables the macromolecules to slip between the layers and the basal spacing of the alkylammonium derivatives are changed in characteristic ways. The partial crystalline sodium clay-protein complexes are reorganized by alkylammonium ions to regular structures. The proteins are not displaced completely from the silicate surfaces so that the basal spacing of the alkylammonium derivatives are enhanced in comparison with pure montmorillonite.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1977

References

Armstrong, D. E. and Chesters, G. (1964) Properties of protein-bentonite complexes as influenced by equilibrium condition: J. Soil Sci. 98, 39.CrossRefGoogle Scholar
Edwards, C. A. and Bremmer, J. M. (1967) Microaggregates in soils: J. Soil Sci. 18, 64.CrossRefGoogle Scholar
Ensminger, L. E. and Gieseking, J. E. (1941) The adsorption of proteins by montmorillonite clays and its effects on base-exchange capacity: J. Soil Sci. 51, 125132.CrossRefGoogle Scholar
Fasold, H. (1972) Struktur von Proteinen: Verlag Chemie, Weinheim.Google Scholar
Gonzalez Garcia, F. y Perez Rodriguez, J. L. (1970) Constitution y propiedades fisicoquimicas de las arcillas de suelos del valle de Guadalquivir: Anales Edaf. y Agrobiol. XXIX, 791820.Google Scholar
Greenland, D. J. (1971) Interactions between humic and fulvic acids: J. Soil Sci. 111, 34.CrossRefGoogle Scholar
Jackson, M. L. (1969) Soil Chemical Analysis: Prentice-Hall , Englewood Cliffs.Google Scholar
Lagaly, G. and Weiss, Armin (1970) Inhomogeneous charge distribution in mica-type layer silicates: Reunion Hispano-Belga de Minerales de la Arcilla, Madrid, 1970, 179187.Google Scholar
Lagaly, G. and Weiss, Armin (1971) Anordnung und Orientierung kationischer Tenside auf Silicatoberflächen, Teil IV: Anordnung von n-Alkylammoniumionen bei niedrig geladenen Schichtsilicaten: Kolloid Z. Z. Polymere 243(1971), 4855.CrossRefGoogle Scholar
Lagaly, G. and Weiss, Armin (1976) The layer charge of smectitic layer silicates: Proc. Internat. Clay Conf. Mexico, 1975, Applied Publ. Ltd., Wilmette, Illinois, USA, 1976, 157172.Google Scholar
Lynch, D. L. and Cotnoir, L. J. (1956) The influence of clay minerals on the breakdown of certain organic substrates: Soil Sci. Soc. Am. Proc. 20, 367370.CrossRefGoogle Scholar
MacRitchie, F. (1972) The adsorption of proteins at the solid/liquid interface. J. Colloid Interface Sci. 38, 484488.CrossRefGoogle Scholar
McLaren, A. D., Peterson, G. H. and Barshad, I. (1958) The adsorption reactions of enzymes and proteins on clay minerals: Soil Sci. Soc. Am. Proc. 22, 239244.CrossRefGoogle Scholar
McKyes, E., Sethi, A. and Yong, R. N. (1974) Amorphous coatings on particles of sensitive clay soils: Clays and Clay Minerals 22, 427–33.CrossRefGoogle Scholar
Mortland, M. M. (1970) Clay organic complexes and interactions: Adv. Agron. 22, 75.CrossRefGoogle Scholar
Mortland, M. M. and Gieseking, J. E. (1952) The influence of clay minerals on the enzymatic hydrolysis of organic phosphorus compounds. Soil Sci. Soc. Am. Proc. 16, 1013.CrossRefGoogle Scholar
Pink, L. A. (1962) Adsorption of proteins, enzymes and antibiotics by montmorillonites: Proc. 9th Nat. Clay Conf., 520529.CrossRefGoogle Scholar
Schnitzer, M. and Kodama, H. (1972) Reactions between fulvic acids and Cu2+-montmorillonite: Clays and Clay Minerals 20, 359367.CrossRefGoogle Scholar
Schnitzer, M. and Khan, S. U. (1972) Humic Substances in the Environment. M. Dekker, Inc., New York.Google Scholar
Talibudeen, O. (1954) Complex formation between montmorillonoid clays and amino acids and proteins: Trans. Faraday Soc. 51, 582590.CrossRefGoogle Scholar
Theng, B. K. G. (1976) Interactions between montmorillonite and fulvic acid: Geoderma 15, 243251.CrossRefGoogle Scholar
Theng, B. K. G. and Scharpenseel, H. W. (1975) The adsorption of 14 C-labelled humic acid by montmorillonite. Proc. Internat. Clay Conf., Mexico City, 1975; Applied Publ. Ltd., Wilmette, Illinois, USA, 1976, p. 643653.Google Scholar
Weiss, Armin und Michel, E. (1958) Über Kationenaustausch und innerkristallines Quellungsvermögen bei kettenförmigen Polyphosphaten: Z. Anorg. Allgem. Chemie 296, 313332.CrossRefGoogle Scholar
Weiss, Armin und Michel, E. (1962) Über die zweidimensionale, geordnete Quellung von Salzen der Pektinsäure: Z. Naturforsch., 17b. 133154.CrossRefGoogle Scholar
Weiss, Armin und Michel, E. (1960) Zur Kenntnis der innerkristallinen Quellung von Poly-D-mannuronsäure (Alginsäure): Z. Naturforsch., 15 b, 807–89.Google Scholar
Weiss, Armin (1963) Isolierung und Konstitutionsermittlung des quellungsfähigen Phosphatsilicates aus Lungen Silicosekranker: Beitr. Silikose Forsch. 5, 93111.Google Scholar