Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-29T17:45:51.503Z Has data issue: false hasContentIssue false

Mössbauer Effect Studies of Iron in Kaolin. I. Structural Iron

Published online by Cambridge University Press:  02 April 2024

S. A. Fysh*
Affiliation:
Department of Physics, Monash University Clayton, Victoria 3168, Australia
J. D. Cashion
Affiliation:
Department of Physics, Monash University Clayton, Victoria 3168, Australia
P. E. Clark*
Affiliation:
Department of Physics, Monash University Clayton, Victoria 3168, Australia
*
1Now at BHP Co. Ltd., Central Research Laboratories, P.O. Box 188, Wallsend, New South Wales 2287 Australia.
2Now at Department of Applied Physics, Capricornia I.A.E., Rockhampton, Queensland, 4700 Australia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

57Fe Mössbauer spectra of a cleaned Weipa, Australia, kaolin showed that a considerable fraction of the structural iron exhibits paramagnetic relaxation between 4°K and 300°K, the first time that this has been observed for ferric ions in a mineral. The sample also contained a very fine particle ferric oxide/oxyhydroxide phase, probably of secondary origin.

Резюме

Резюме

Мессбауеровские спектры 57Fе чистого каолинита Вайпа из Австралии показали, что значительная фракция структурного железа проявляет парамагнитную релаксацию между 4° и 300°К. Это наблюдалось первый раз для железных ионов в минерале. Образец содержал также очень мелкую фазу окиси/оксигидрата железа, вероятно, вторичного происхождения. [Е.О.]

Résumé

Résumé

57Eisen-Mössbauerspektren eines gereinigten Kaolin von Weipa, Australien, zeigte, daß ein beachtlicher Teil des in der Struktur eingebauten Eisens paramagnetische Relaxation zwischen 4°K und 300°K zeigt. Dies wurde zum ersten Mal bei einem Fe3+-Ion in einem Mineral beobachtet. Die Probe entheilt außerdem eine sehr feinteilige Fe3+-Oxid/Oxihydroxid-Phase, die wahrscheinlich sekundär entstanden ist. [U.W.]

Résumé

Résumé

Des spectres de Mössbauer 57Fe d'un kaolin nettoyé de Weipa, Australie ont montré qu'une fraction considérable du fer structural exhibait une relaxation paramagnétique entre 4°K et 300°K, la première fois que ceci a été observé pour des ions ferriques dans un minéral. L’échantillon contenait aussi une phase de particule ferrique oxide/oxyhydroxide très fine, probablement d'origine secondaire. [D.J.]

Type
Research Article
Copyright
Copyright © 1983, The Clay Minerals Society

References

Aikin, T. L. H. and Cashion, J. D., 1983 Mössbauer analysis of iron phases in brown coal ash and slag Fuel .CrossRefGoogle Scholar
Angel, B. R. and Vincent, W. E. J., 1978 Electron spin resonance studies of iron oxides associated with the surface of kaolins Clays & Clay Minerals 26 263272.CrossRefGoogle Scholar
Blume, M. and Tjon, J. A., 1968 Mössbauer spectra in a fluctuating environment Phys. Rev. 165 446456.CrossRefGoogle Scholar
Bowen, L. H., 1979 Mössbauer spectroscopy of ferric oxides and hydroxides Mass. Effect Ref. Data J. 2 7694.Google Scholar
Coey, J. M. D., 1971 Noncollinear spin arrangement in ultrafine ferromagnetic crystallites Phys. Rev. Lett. 2 11401142.CrossRefGoogle Scholar
Coey, J. M. D., Hrynkiewicz, A. Z. and Sawicki, J. A., 1975 The clay minerals: use of the Mössbauer effect to characterise them and study their transformation Proc. Int. Conf. Mössbauer Sped., Cracow, Poland Cracow Akad. Gornczo-Hutnicza 333354.Google Scholar
Cuttler, A. H., 1980 The behaviour of a synthetic 57Fe-doped kaolin: Mössbauer and electron paramagnetic resonance studies Clay Miner. 15 429444.CrossRefGoogle Scholar
Ericsson, T., Wappling, R. and Punakivi, K., 1977 Mössbauer spectroscopy applied to clay and related minerals Geol. Foeren. Stockholm Foerh. 99 229244.CrossRefGoogle Scholar
Fysh, S. A. and Clark, P. E., 1982 Aluminous goethite—a Mössbauer study Phys. Chem. Minerals 8 180187.CrossRefGoogle Scholar
Fysh, S. A. and Clark, P. E., 1982 Aluminous hematite—a Mössbauer study Phys. Chem. Minerals 8 257267.CrossRefGoogle Scholar
Fysh, S. A., Cashion, J. D. and Clark, P. E., 1983 Mössbauer effect studies of iron in kaolin. II. Surface iron Clays & Clay Minerals 4 293298.CrossRefGoogle Scholar
Goodman, B. A., 1978 An investigation by Mössbauer and EPR spectroscopy of the possible presence of iron-rich impurity phases in some montmorillonites Clay Miner. 13 351356.CrossRefGoogle Scholar
Hall, P. L., 1980 The application of electron spin resonance spectroscopy to studies of clay minerals: I. Isomorphous substitutions and external surface properties Clay Miner. 15 321335.CrossRefGoogle Scholar
Hogg, C. S., Maiden, P. J. and Meads, R. E., 1975 Identification of iron-containing impurities in natural kaolinites using the Mössbauer effect Min. Mag. 40 8996.CrossRefGoogle Scholar
Janot, C., Gibert, H. and Tobias, C., 1973 Characterisation de kaolinites ferrifères par spectrométrie Mössbauer Bull. Soc. Fr. Mineral. Cristallogr. 96 281291.Google Scholar
Jefferson, D. A., Tricker, M. J. and Winterbottom, A. P., 1975 Electron microscopic and Mössbauer spectroscopic studies of iron-stained kaolinite minerals Clays & Clay Minerals 23 355360.CrossRefGoogle Scholar
Jepson, W. B. and Rowse, J. B., 1975 The composition of kaolinite—an electron microscope microprobe study Clays & Clay Minerals 23 310317.CrossRefGoogle Scholar
Komusinski, J., Stoch, L. and Dubiel, S. M., 1981 Application of electron paramagnetic resonance and Mössbauer spectroscopy in the investigation of kaolinite-group minerals Clays & Clay Minerals 29 2330.CrossRefGoogle Scholar
Loughnan, F. C. and Bayliss, P., 1961 The mineralogy of the bauxite deposits near Weipa, Queensland Amer. Mineral. 46 209217.Google Scholar
Malden, P. J. and Meads, R. E., 1967 Substitution by iron in kaolinite Nature 215 844846.CrossRefGoogle Scholar
Meads, R. E. and Maiden, P. J., 1975 Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions Clay Miner. 10 313345.CrossRefGoogle Scholar
Mendelovici, E., Yariv, S.h. and Villalba, R., 1979 Iron bearing kaolinite in Venezuelan laterites: I. Infrared spectroscopy and chemical dissolution evidence Clay Miner. 14 323331.CrossRefGoogle Scholar
Mestdagh, M. M., Vielvoye, L. and Herbillon, A. J., 1980 Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content Clay Miner. 15 113.CrossRefGoogle Scholar
Morrish, A. H. and Clark, P. E., 1974 Non-collinearity as a size effect in micropowders of γ-Fe2O3 Proceedings ICM-73 Nauka Moscow 180185.Google Scholar
Merup, S., Sontheimer, F., Ritter, G. and Zimmerman, R., 1978 Mössbauer effect studies of spin-spin relaxation in single crystals of Fe(NO3)3-9H2O at 4.2°K J. Phys. Chem. Solids 39 123128.CrossRefGoogle Scholar
Rengasamy, P., Krishna Murti, G. S. R. and Sarma, V. A. K., 1975 Isomorphous substitution of iron for aluminum in some soil kaolinites Clays & Clay Minerals 23 211214.CrossRefGoogle Scholar
Ross, C. A. M. and Longworth, G., 1980 Mössbauer study of the attentuation of iron in an irrigated greensand lysimeter Clays & Clay Minerals 28 4349.CrossRefGoogle Scholar
Veith, J. A. and Jackson, M. L., 1974 Iron oxidation and reduction effects on structural hydroxyl and layer charge in aqueous suspensions of micaceous vermiculites Clays & Clay Minerals 22 345353.CrossRefGoogle Scholar
Wickman, H. H., Klein, M. P. and Shirley, D. A., 1966 Paramagnetic hyperfine structure and relaxation effects in Mössbauer spectra: Fe57 in Ferrichrome A Phys. Rev. 152 345357.CrossRefGoogle Scholar
Wickman, H. H. and Wertheim, G. K. (1968) in Chemical Applications of Mössbauer Spectroscopy, Goldanskii, V. I. and Herber, R. H., eds., Academic Press, New York, Ch. 11, 548621.Google Scholar
Wignall, J. W. G., 1966 Mössbauer line broadening in trivalent iron compounds J. Chem. Phys. 44 24622467.CrossRefGoogle Scholar