Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T14:41:54.808Z Has data issue: false hasContentIssue false

Mixed-Layer Kerolite/Stevensite from the Amargosa Desert, Nevada

Published online by Cambridge University Press:  02 April 2024

Dennis D. Eberl
Affiliation:
U.S. Geological Survey, Denver Federal Center, Denver, Colorado 80225
Blair F. Jones
Affiliation:
U.S. Geological Survey, National Center, Reston, Virginia 22092
Hani N. Khoury
Affiliation:
Department of Geology and Mineralogy, University of Jordan, Amman, Jordan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mixed-layer clays composed of randomly interstratified kerolite/stevensite occur as lake and/or spring deposits of probable Pliocene and Pleistocene age in the Amargosa Desert of southern Nevada, U.S.A. The percentage of expandable layers of these clays, determined from computer-simulated X-ray diffractograms, ranges from almost 0 to about 80%. This range in expandabilities most likely results from differences in solution chemistry and/or temperature at the time of formation. An average structural formula for the purest clay (sample P-7), a clay with about 70% expandable layers, is:

$${\left[ {\left( {M{g_{2,72}}A{l_{0,07}}F{e_{0.03}}L{i_{0.09}}} \right)\left( {S{i_{3.96}}A{l_{0.04}}} \right){O_{10}}{{\left( {OH} \right)}_2}} \right]^{ - 0.21}}{\left[ {X_{0.21}^ + } \right]^{ + 0.21}}.$$

The data suggest that talc, kerolite, and stevensite form a continuous structural series based on layer charge.

Резюме

Резюме

Резюме—Смешано-слойные глины, составленные из случайно внутринапластованного керолита/стевенсита залегают как озерные и/или источниковые осадки, вероятно, плиоценовой и плейсто-ценовой эпохи на пустыни Амаргоса в южной Неваде, С.Ш. Процентное отношение расширя-ющихся слоев в этих глинах, определенное путем компьютерномоделированных рентгеновских дифрактограммов, находится в диапазоне от 0 до 80%. Этот диапазон, вероятно, есть результатом различной химии растворов и/или разных температур во время формирования. Средняя струк-турная формула наиболее чистого образца глины (Р-7) с около 70% растирающихся слоев есть:

$${\left[ {\left( {M{g_{2,72}}A{l_{0,07}}F{e_{0.03}}L{i_{0.09}}} \right)\left( {S{i_{3.96}}A{l_{0.04}}} \right){O_{10}}{{\left( {OH} \right)}_2}} \right]^{ - 0.21}}{\left[ {X_{0.21}^ + } \right]^{ + 0.21}}.$$

Эти новые данные указывают на то, что тальк, керолит и стевенсит формируют непрерывные структурные серии на основе слойного заряда. [Е.С.]

Resümee

Resümee

Unregelmäßige Wechsellagerungen aus Kerolit/Stevensit treten als Ablagerungen von Seen und Quellen, wahrscheinlich aus dem Pliozän und Pleistozän, in der Amargosa Wüste, Südnevada, USA, auf. Der Anteil quellfähiger Lagen in diesen Tonen, der mittels Computer-simulierten Röntegendiffraktogrammen bestimmt wurde, reicht von nahezu 0 bis etwa 80%. Diese unterschiedliche Expandierbarkeit resultiert höchstwahrscheinlich aus der unterschiedlichen Lösungszusammensetzung und/oder Temperatur während der Bildung. Eine durchschnittliche Strukturformel für den reinsten Ton (Probe P-7), ein Ton mit 70% quellfähigen Schichten, lautet:

$${\left[ {\left( {M{g_{2,72}}A{l_{0,07}}F{e_{0.03}}L{i_{0.09}}} \right)\left( {S{i_{3.96}}A{l_{0.04}}} \right){O_{10}}{{\left( {OH} \right)}_2}} \right]^{ - 0.21}}{\left[ {X_{0.21}^ + } \right]^{ + 0.21}}.$$

Aus diesen neuen Ergebnisse geht hervor, daß Talk, Kerolit, und Stevensit eine kontinuierliche strukturelle Serie darstellen, die auf unterschiedlichen Schichtladungen beruht. [U.W.]

Résumé

Résumé

Des argiles à couches mélangées composées de kef olite/stévensite interstratifiées au hasard sont trouvées comme dépôts de lacs et/ou de sources, probablement d’âge pliocène et pleistocene dans le Desert Amargosa du Nevada du sud, U.S.A. Le pourcentage de couches expansibles de ces argiles, déterminé par des diffractogrammes aux rayons-X simulés par l'ordinateur, varie de zero à à peu près 80%. Cette étendue d'expansions est sans doute le résultat de différences dans la chimie et/ou la température lors de la formation. Une formule structurale moyenne pour l’échantillon d'argile le plus pur (P-7), une argile ayant des couches approximativement 70% expansibles, est:

$${\left[ {\left( {M{g_{2,72}}A{l_{0,07}}F{e_{0.03}}L{i_{0.09}}} \right)\left( {S{i_{3.96}}A{l_{0.04}}} \right){O_{10}}{{\left( {OH} \right)}_2}} \right]^{ - 0.21}}{\left[ {X_{0.21}^ + } \right]^{ + 0.21}}.$$

A partir de ces nouvelles données, on suggère que le talc, la kérolite, et la stevensite forment une série structurale continue basée sur la charge de couche. [D.J.]

Type
Research Article
Copyright
Copyright © 1982, The Clay Minerals Society

References

Brindley, G. W., 1955 Stevensite, a montmorillonite-type mineral showing mixed-layer characteristics Amer. Mineral. 40 239247.Google Scholar
Brindley, G. W., Bish, D. L. and Wan, H. M., 1977 The nature of kerolite, its relation to tale and stevensite Mineral. Mag. 41 443452.CrossRefGoogle Scholar
Dyni, J. R. (1976) Trioctahedral smectite in the Green River formation, Duchesne Co. Utah: U.S. Geol. Surv. Prof. Pap. 967, 14 pp.Google Scholar
Eberl, D., Whitney, G. and Khoury, H., 1978 Hydrothermal reactivity of smectite Amer. Mineral. 63 401409.Google Scholar
Faust, G. T. and Murata, K. J., 1953 Stevensite, redefined as a member of the montmorillonite group Amer. Mineral. 38 937987.Google Scholar
Faust, G. T., Hathaway, J. C. and Millot, G., 1959 A restudy of stevensite and allied minerals Amer. Mineral. 44 342370.Google Scholar
Hower, J. and Mowatt, T. C., 1966 Mineralogy of the illiteillite/montmorillonite group Amer. Mineral. 51 821854.Google Scholar
Jackson, M. L., 1975 Soil Chemical Analysis—Advanced Course 2nd isc. Published by the author, Madison, W.Google Scholar
Jones, B. F. and Weir, A. H. (1983) Clay minerals in an alkaline saline lake: Clays & Clay Mineral. 31 (in press).CrossRefGoogle Scholar
Khoury, H. N., 1979 Mineralogy and chemistry of some unusual clay deposits in the Amargosa Desert, southern Nevada Urbana, Illinois Ph.D. Thesis, University of Illinois.Google Scholar
Khoury, H.N., Eberl, D.D. and Jones, B.F., 1982 Origin of clays from the Amargosa Desert, Nevada Clays & Clay Mineral. 30 327336.CrossRefGoogle Scholar
Rettig, S. L., Marinenko, J. W., Khoury, H. N. and Jones, B.F., 1983 The analysis ofultrafine clays from the Amargosa Desert and from Lake Abert, Orgeon .Google Scholar
Reynolds, R. C. Jr. and Hower, J., 1970 The nature of interlayering in mixed-layer illite-montmorillonites Clays & Clay Mineral. 18 2536.CrossRefGoogle Scholar
Shapiro, L. (1975) Rapid analysis of silicate, carbonate, and phosphate rocks—revised edition: U.S. Geol. Surv. Bull. 1401, 76 pp.Google Scholar
Skougstad, M. W., Fishman, M. J., Friedman, L. C., Erdmann, D. E., and Duncan, S. S. (1979) Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geol. Surv. Tech. Water Res. Invest. 5, A1, 626 pp.Google Scholar
Tettenhorst, R., Moore, G. E. Jr., 1978 Stevensite oolites from the Green River formation of central Utah J. Sed. Petrol. 48 587594.Google Scholar
Weir, A. H. and Jones, B. F., 1978 Clay minerals in the sediments of a saline lake Abstracts, 6th Internat. Clay Conf. Oxford, 1978 301.Google Scholar