Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T19:20:41.685Z Has data issue: false hasContentIssue false

Mixed-Layer Kaolinite—Montmorillonite from the Yucatan Peninsula, Mexico

Published online by Cambridge University Press:  01 July 2024

L. G. Schultz
Affiliation:
U.S. Geological Survey, Denver, Colorado 80225, U.S.A.
A. O. Shepard
Affiliation:
U.S. Geological Survey, Denver, Colorado 80225, U.S.A.
P. D. Blackmon
Affiliation:
U.S. Geological Survey, Denver, Colorado 80225, U.S.A.
H. C. Starkey
Affiliation:
U.S. Geological Survey, Denver, Colorado 80225, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Clay beds 1–2 m thick and interbedded with marine limestones probably of early Eocene age are composed of nearly pure mixed-layer kaolinite-montmorillonite. Particle size studies, electron micrographs, X-ray diffraction studies, chemical analyses, cation exchange experiments, DTA, and TGA indicate that clays from three different localities contain roughly equal proportions of randomly interlayered kaolinite and montmorillonite layers. The montmorillonite structural formulas average K0·2Na0·2Ca0·2Mg0·2(Al2·5Fe1·03+Mg0·5)(Al0·75Si7.25)O20+(OH)4−, with a deficiency of structural (OH) in either the montmorillonite or kaolinite layers. Nonexchangeable K+ indicates that a few layers are mica-like. Crystals are mostly round plates 1/10 to 1/20 μ across. The feature most diagnostic of the mixed-layer character is an X-ray reflection near 8 Å after heating at 300°C. The clays are inferred to have developed by weathering of volcanic ash and subsequent erosion and deposition in protected nearshore basins.

Résumé

Résumé

Les couches d’argile de 1 à 2 m d’épaisseur alternant avec des calcaires marins datant probablement du début de l’éocène, sont composées d’un interstratifié kaolinite-montmorillonite à peu près pur. L’étude de la taille des particules, les micrographies électroniques, la diffraction des rayons X, les analyses chimiques, les expériences d’échange de cations, l’ATD et l’ATG, indiquent que les argiles provenant de trois localités différentes contiennent en proportion à peu près égale des feuillets de kaolinite et de montmorillonite interstratifiés au hasard. La montmorillonite a en moyenne la formule structurale K0·2Na0·2Ca0·2Mg0·2(Al2·5Fe1·03+Mg0·5)(Al0·75Si7·25)O20+(OH)4−, avec un déficit d’OH de structure aussi bien dans les feuillets de montmorillonite que de kaolinite. Du potassium non échangeable indique que quelques feuillets sont du type mica. Les cristaux sont le plus souvent des plaques arrondies d’un diamètre allant de 1/10 à 1/20 μ. Le diagnostic essentiel du caractère interstratifié est un pic de diffraction X voisin de 8 Å après chauffage à 300°C. On suppose que les argiles se sont développées par altération d’une cendre volcanique, suivie d’une érosion et d’un dépôt dans des bassins protégés voisins de la côte.

Kurzreferat

Kurzreferat

Tonbetten von 1–2 m Stärke und zwischengelagert mit Meerkalkstein aus dem frühen Eozän setzen sich aus fast reinem gemischtschichtigem Kaolinit-Montmorillonit zusammen. Untersuchungen der Teilchengrösse, Elektronenmikrographien, Röntgenbeugungsuntersuchungen, chemische Analysen, Kationenaustauschversuche, DTA und TGA deuten darauf hin, dass Tone von drei verschiedenen Fundorten ungefähr gleiche Anteile unregelmässig zwischengelagerter Kaolinitund Montmorillonitschichten enthalten. Die Montmorillonitstrukturformeln umfassen im Durchschnitt K0,2Na0,2Ca0,2Mg0,2(Al2,5Fe1,03+Mg0,5)(Al0,75Si7,25)O20+(OH)4−, mit einem Mangel an strukturellem (OH) in entweder den Montmorillonitoder den Kaolinitschichten. Nichtaustauschbare K+ zeigen an, dass einige Schichten glimmerähnlich sind. Die Kristalle sind meist runde Plättchen von 1/10 bis 1/20/ μ Quermass. Das eindeutigste Merkmal des Gemischtschichtcharakters ist eine Röntgenreflexion nahe 8 Å nach Erwärmung auf 300°C. Es wird vermutet, dass sich die Tone durch Verwitterung vulkanischer Asche und nachfolgender Erosion und Ablagerung in geschützten, küstennahen Bassins gebildet haben.

Резюме

Резюме

Глинистые пласты мощностью 1–2 м, переслаивающиеся с морским известняком, возможно, раннеэоценового возраста, состоят из почти чистого смешанно-слойного каолинит-монтмориллонита. Изучение размеров частиц, данные электронной микроскопии, рентгено-графии, химического анализа, изучение катионообменных свойств, ДТА и ТГА показали, что глинистый минерал трех различных месторождений содержит примерно равные доли бес-порядочно чередующихся каолинитовых и монтмориллонитовых слоев. Усредненная структурная формула монтмориллонита: K0,2Na0,2Ca0,2Mg0,2(Al2,5Fe1,03+Mg0,5)(Al0,75Si7,25)O20+(OH)4−; характерен дефицит структурных гидроксилов как в монтмориллонитовых, так и в каолини-товых слоях. Наличие необменных ионов К+ указывает на слюдяную природу некоторых слоев. Кристаллы в большинстве случаев представляют округлые пластинки с диаметром 1/10–1/20 мк. Наиболее вероятным диагностическим признаком смешанно-слойного характера минарала является рентгеновское отражение около 8 Å образцов, нагретых до 300°. Эти глины образовались при выветривании вулканического пепла с последующим переотложением в околобереговых бассейнах.

Type
Research Article
Copyright
Copyright © Pergamon Press 1971

Footnotes

*

Publication authorized by the Director, U.S. Geological Survey.

References

Altschuler, Z. S., Dwornik, E. J. and Kramer, H., (1963) Transformation of montmorillonite to kaolinite during weathering Science 141 148152.CrossRefGoogle ScholarPubMed
Brindley, G. W. and Brown, G., (1961) Experimental methods, and Kaolin, serpentine, and kindred minerals X-ray Identification and Crystal Structures of Clay Minerals London The Mineralog. Soc., Clay Minerals Group 1131.Google Scholar
Brindley, G. W. and de Souza Santos, P., (1966) New varieties of kaolin group minerals and the problem of finding a suitable nomenclature Proc. Internat. Clay Conf., Jerusalem 39.Google Scholar
Brown, G., MacEwan, D. M. C. and Brindley, G. W., (1951) X-ray diffraction by structures with random interstratification X-ray Identification and Crystal Structures of Clay Minerals London The Mineralog. Soc, Clay Minerals Group 314320.Google Scholar
Butterlin, J. and Bonet, F., (1963) Mapas geológicos de la península de Yucatán—I. Las formaciones cenozóicas de la parte mexicana de la peninsula de Yucatan Ingeniería Hydraul. México 17 6371.Google Scholar
Greene-Kelly, R., (1955) Dehydration of the montmor-illonite minerals Mineralog. Mag. 30 604615.Google Scholar
Klug, H. P. and Alexander, L. E., (1954) X-ray Diffraction Procedures New York Wiley.Google Scholar
MacEwan, D. M. C. and Brown, G., (1961) Montmorillonite minerals X-ray Identification and Crystal Structures of Clay Minerals London The Mineralog. Soc, Clay Minerals Group 143207.Google Scholar
MacEwan, D. M. C. Ruiz Amil, A., Brown, G. and Brown, G., (1961) Interstratified clay minerals X-ray Identification and Crystal Structures of Clay Minerals London The Mineralog. Soc., Clay Minerals Group 393445.Google Scholar
Mooney, R. W., Keenan, A. G. and Wood, L. A., (1952) Adsorption of water vapor by montmorillonite J. Am. Chem. Soc. 74 13671374.CrossRefGoogle Scholar
Poncelet, G. M. and Brindley, G. W., (1967) Experimental formation of kaolinite from montmorillonite at low temperatures Am. Mineralogist 52 11611173.Google Scholar
Ross, M., (1968) X-ray diffraction effects by non-ideal crystals of biotite, muscovite, montmorillonite, mixed-layer clays, graphite, and periclase Z. Kristall. 126 8097.CrossRefGoogle Scholar
Ruiz Amil, A., Ramirez Garcia, A. and MacEwan, D. M. C., (1967) X-ray Diffraction Curves for the Analysis of Interstratified Structures Inst. Quimica Inorg. 179.Google Scholar
Schultz, L. G., (1969) Lithium and potassium absorption, dehydroxylation temperature, and structural water content of aluminous smectites Clays and Clay Minerals 17 115149.CrossRefGoogle Scholar
Shimoyama, A., Johns, W. D. and Sudo, T., (1969) Montmorillonite-kaolin clay in acid clay deposits from Japan Proc. Internat. Clay Conf, Tokyo 225231.Google Scholar
Sudo, T., (1959) Mineralogical Study on Clays of Japan .Google Scholar
Sudo, T. and Hayashi, H., (1955) Types of mixed-layer minerals from Japan Clays and Clay Minerals 4 389412.Google Scholar
Thompson, R. H., (1958) Modern Yucatecan Maya pottery making .Google Scholar