Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T06:10:33.994Z Has data issue: false hasContentIssue false

Mineralogical and Geochemical Characteristics and Genesis of Hydrothermal Kaolinite Deposits within Neogene Volcanites, Kütahya (Western Anatolia), Turkey

Published online by Cambridge University Press:  01 January 2024

Selahattin Kadır*
Affiliation:
Eskişehir Osmangazi University, Department of Geological Engineering, TR-26480 Eskişehir, Turkey
Hande Erman
Affiliation:
Eskişehir Osmangazi University, Department of Geological Engineering, TR-26480 Eskişehir, Turkey
Hülya Erkoyun
Affiliation:
Eskişehir Osmangazi University, Department of Geological Engineering, TR-26480 Eskişehir, Turkey
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Kütahya kaolinite deposits are the most important source of raw materials for the ceramics industry in Turkey. To date, no detailed mineralogical or geochemical characterizations of these materials have been carried out; the present study aims to fill that gap. The Kütahya kaolinite deposits formed by alteration of dacite and andesite tuffs related to Neogene volcanism whichwas associated withe xtensional tectonics. The kaolinite deposits contain silica and Fe- and Ti-bearing phases (pyrite, goethite, and rutile) in vertical and subvertical veins that diminish and then disappear upward. Mineralogical zonation outward from the main kaolinite deposit is as follows: kaolinite ± smectite + illite + opal-CT + feldspar; feldspar + kaolinite + quartz + smectite + illite; quartz + feldspar + volcanic glass. The veins and mineral distributions demonstrate that hydrothermal alteration was the main process in the development of the kaolinite deposits of the area. The very sharp, intense, diagnostic basal reflections at 7.2 and 3.57 Å, as well as non-basal reflections, well defined pseudohexagonal to hexagonal crystallinity with regular outlines, ideal differential thermal analysis-thermal gravimetric curves, and ideal, sharp, infrared spectral bands indicate well crystallized kaolinite. Micromorphologically, the development of kaolinite plates at the edges of altered feldspar and devitrified volcanic glass indicates an authigenic origin. Lateral increase in (SiO2+Fe2O3+MgO+Na2O+CaO+K2O)/(Al2O3+TiO2) from the center of the kaolinite deposit outward also indicates hydrothermal zonation. Enrichment of Sr in altered and partially altered rocks relative to freshvolca nic-rock samples demonstrates retention of Sr and depletion of Rb, Ba, Ca, and K during hydrothermal alteration of sanidine and plagioclase within the volcanic units. In addition, depletion of heavy rare earth elements (HREE) relative to light rare earth elements (LREE) in the kaolinized materials may be attributed to the alteration of hornblende. The negative Eu anomaly suggests the alteration of feldspar by hydrothermal fluids. The isotopic data from kaolinite and smectite indicate that hydrothermalalteration processes developed at 119.1–186.9°C and 61.8–84.5°C, respectively. Thus, the kaolinite deposits formed by hydrothermal alteration of volcanic glass, feldspar, and hornblende by a dissolutionprecipitation mechanism which operated under acidic conditions within Neogene dacite, andesite, and tuffs.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2011

References

Arslan, M. Kadir, S. Abdioğlu, E. and Kolaylı, H., 2006 Origin and formation of kaolin minerals in saprolite of Tertiary alkaline volcanic rocks, Eastern Pontides, NE Turkey Clay Minerals 41 597617 10.1180/0009855064120208.CrossRefGoogle Scholar
Akdeniz, N. and Konak, N. (1979a) Simav-Emet-Tavşanlı-Dursunbey-Demirci yörelerinin jeolojisi. MTA Report No. 6547 (in Turkish, Unpublished).Google Scholar
Akdeniz, N. and Konak, N., 1979b Menderes masifinin Simav dolayındaki kaya birimleri ve metabazik, metaultramafik kayaların konumu Türkiye Jeoloji Kurumu Bülteni 22 175183.Google Scholar
Balan, E. Saitta, A.M. Mauri, F. and Calas, G., 2001 First-principles modeling of the infrared spectrum of kaolinite American Mineralogist 86 13211330 10.2138/am-2001-11-1201.CrossRefGoogle Scholar
Balan, E. Lazzeri, M. Saitta, A.M. Allard, T. Fuchs, Y. and Mauri, F., 2005 First-principles study of OH-stretching modes in kaolinite, dickite, and nacrite American Mineralogist 90 5060 10.2138/am.2005.1675.CrossRefGoogle Scholar
Benco, L. Tunega, D. Hafner, J. and Lischka, H., 2001 Orientation of OH groups in kaolinite and dickite: Ab initio molecular dynamics study American Mineralogist 86 10571065 10.2138/am-2001-8-912.CrossRefGoogle Scholar
Bobos, I. Duplay, J. Rocha, J. and Gomes, C., 2001 Kaolinite to halloysite-7 Å transformation in the kaolin deposit of São Vicente de Pereira, Portugal Clays and Clay Minerals 49 596607 10.1346/CCMN.2001.0490609.CrossRefGoogle Scholar
Braide, S.P. and Huff, W.D., 1986 Clay mineral variation in Tertiary sediments from the eastern Flank of the Niger Delta Clay Minerals 21 211224 10.1180/claymin.1986.021.2.10.CrossRefGoogle Scholar
Brindley, G.W., Brindley, G.W. Brown, G., 1980 Quantitative X-ray analysis of clays Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 411438.CrossRefGoogle Scholar
Burçak, M. Sevim, F. and Hacisalihoglu, O., 2007 Discovering a new buried geothermal field found using geological-geophysical and geochemical methods in Uchbash-Shaphane, Kutahya western Anatolia, Turkey Thirty-Second Workshopon Geothermal Reservoir Engineering, Proceedings, Stanford University, California 23 SGP-TR-183.Google Scholar
Campbell, A.C. Palmer, M.R. Klinkhammer, G.P. Bowers, T.S. Edmond, J.M. Lawrence, J.R. Casey, J.F. Thompson, G. Humphris, S. Rona, P. and Karson, J.A., 1988 Chemistry of hot springs on the Mid-Atlantic ridge: TAG and MARK Sites Nature 335 514519 10.1038/335514a0.CrossRefGoogle Scholar
Churchman, G.J. and Gilkes, R.J., 1989 Recognition of intermediates in the possible transformation of halloysite to kaolinite in weathering profiles Clay Minerals 24 579590 10.1180/claymin.1989.024.4.02.CrossRefGoogle Scholar
Çiftçi, N.B. and Bozkurt, E., 2009 Evolution of the Miocene sedimentary fill of the Gediz Graben, SW Turkey Sedimentary Geology 216 4979 10.1016/j.sedgeo.2009.01.004.CrossRefGoogle Scholar
Clayton, R.N. and Mayeda, T.K., 1963 The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis Geochimica et Cosmochimica Acta 27 4352 10.1016/0016-7037(63)90071-1.CrossRefGoogle Scholar
Çoban, F., 2001 Çayırlık Tepe perlitinin (Başren-Kütahya) bentonite alterasyonu sırasında majör, eser ve nadir toprak elementlerinin mobilizasyonu 10th Ulusal Kil Sempozyumu 282304.Google Scholar
Ece, I. and Yüce, A.E., 1999 Endüstriyel mineraller envanteri, Yurt Madenciliğini Geliştirme Vakfı 7783.Google Scholar
Erhenberg, S.N., 1991 Kaolinized, potassium-leached zones at the contacts of the Garn Formation, Haltenbanken, mid-Norwegian continental shelf Marine and Petroleum Geology 8 250269 10.1016/0264-8172(91)90080-K.CrossRefGoogle Scholar
Ercan, T. Dinçel, A. Metin, S. Türkecan, A. and Günay, A., 1978 Uşak yõresindeki Neojen havzalarının jeolojisi (Geology of the Neogene basins in Uşak region) Bulletin of the Geological Society of Turkey 21 97106.Google Scholar
Ercan, T. Günay, E. and Savaşçın, M.Y., 1981-1982 Simav ve çevresindeki Senozoyik yaşlı volkanizmanın bölgesel yorumlanması MTA Dergisi 97/98 86101.Google Scholar
Farmer, V.C. and Farmer, V.C., 1974 The layer silicates The Infrared Spectra of Minerals London Mineralogical Society 331364 10.1180/mono-4.15.CrossRefGoogle Scholar
Faure, G., 1986 Principles of Isotope Geology New York John Wiley and Sons.Google Scholar
Felhi, M. Tlili, A. Gaied, M.E. and Montacer, M., 2008 Mineralogical study of kaolinitic clays from Sidi El Bader in the far North of Tunisia Applied Clay Science 39 208217 10.1016/j.clay.2007.06.004.CrossRefGoogle Scholar
Fulignati, P. Gioncada, A. and Sbrana, A., 1999 Rare earth element (REE) behaviour in alteration facies of the active magmatic—hydrothermal system of Vulcano (Aeolian Islands, Italy) Journal of Volcanology and Geothermal Research 88 325342 10.1016/S0377-0273(98)00117-6.CrossRefGoogle Scholar
Gilg, H.A. Weber, B. Kasbohm, J. and Frei, R., 2003 Isotope geochemistry and origin of illite-smectite and kaolinite from the Seilitz and Kemmlitź kaolin deposits, Saxony, Germany Clay Minerals 38 95112 10.1180/0009855033810081.CrossRefGoogle Scholar
Helvacı, C., 1984 Occurence of rare borate minerals: Veatchite-A, tunellite, teruggite and cahnite in the Emet borate deposits, Turkey Mineralium Deposita 19 217226 10.1007/BF00199788.CrossRefGoogle Scholar
Huang, W.H., 1974 Stabilities of kaolinite and halloysite in relation to weathering of feldspar and nepheline in aqueous solution American Mineralogist 59 365371.Google Scholar
Işkı, I. Uz, V. and Alver, Z., 2001 Çayca yöresi (Kütahya) tüflerinin karakterizasyonu ve seramik endüstrisinde kullanım olanakları 10th Ulusal Kil Sempozyumu 480492.Google Scholar
Inoue, A. and Velde, B., 1995 Formation of Clay Minerals in Hydrothermal Environments Origin and Mineralogy of Clays Berlin Springer-Verlag 268329 10.1007/978-3-662-12648-6_7.CrossRefGoogle Scholar
Jepson, W.B. and Rowse, J.B., 1975 The composition of kaolinite; an electron microscope microprobe study Clays and Clay Minerals 23 310317 10.1346/CCMN.1975.0230407.CrossRefGoogle Scholar
Johnston, C.T. Agnew, S.F. and Bish, D.L., 1990 Polarized single-crystal Fourier-transform infrared microscopy of Ouray dickite and Keokuk kaolinite Clays and Clay Minerals 38 573583 10.1346/CCMN.1990.0380602.CrossRefGoogle Scholar
Kadir, S. and Karakaş, Z., 2002 Mineralogy, chemistry and origin of halloysite, kaolinite and smectite from Miocene ignimbrites, Konya, Turkey Neues Jahrbuch für Mineralogie, Abhandlungen 177 113132.CrossRefGoogle Scholar
Kadir, S. and Akbulut, A., 2009 Mineralogy, geochemistry and genesis of the Taşoluk kaolinite deposits in pre-Early Cambrian metamorphites and Neogene volcanites of Afyonkarahisar, Turkey Clay Minerals 44 89112 10.1180/claymin.2009.044.1.89.CrossRefGoogle Scholar
Kadir, S. and Kart, F., 2009 Occurrence and origin of the Söğüt kaolinite deposits in the Paleozoic Saricakaya granitegranodiorite complexes and overlying Neogene sediments (Bilecik, Northwestern Turkey) Clays and Clay Minerals 57 311329 10.1346/CCMN.2009.0570304.CrossRefGoogle Scholar
Karakaya, N., 2009 REE and HFS element behaviour in the alteration facies of the Erenler Dağı Volcanics (Konya, Turkey) and kaolinite occurrence Journal of Geochemical Exploration 101 185208 10.1016/j.gexplo.2008.07.001.CrossRefGoogle Scholar
Konak, N., 2007 1/500,000 scale geological mapof Turkey - Izmir General Directorate of Mineral Researchand Exploration of Turkey.Google Scholar
Kunze, G.W. Dixon, J.B., Klute, A., 1986 Pretreatment for mineralogical analysis Methods of Soil Analysis, Part I, Physical and Mineralogical Methods 9199.CrossRefGoogle Scholar
Lavery, N.G., 1985 Quantifying chemical changes in hydrothermally altered volcanic sequences — silica enrichment as a guide to the Crandon massive sulfide deposit, Wisconsin, USA Journal of Geochemical Exploration 24 127 10.1016/0375-6742(85)90002-0.CrossRefGoogle Scholar
MacKenzie, R.C., 1957 The Differential Thermal Investigation of Clays London Monograph 3, Mineralogical Society.Google Scholar
MacLean, W.H. and Kranidiotis, P., 1987 Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposits, Matagami, Quebec Economic Geology 2 951962 10.2113/gsecongeo.82.4.951.CrossRefGoogle Scholar
Madejová, J. Kečk, K. Pálková, H. and Komadel, P., 2002 Identification of components in smectite/kaolinite mixtures Clay Minerals 37 377388 10.1180/0009855023720042.CrossRefGoogle Scholar
Meunier, A., 2005 Clays Berlin, Heidleberg Springer-Verlag.Google Scholar
Meunier, A. and Velde, B., 2004 Illite: Origin, Evolution and Metamorphism Berlin, Heidelberg, New York Springer-Verlag 10.1007/978-3-662-07850-1.CrossRefGoogle Scholar
Mongelli, G., 1997 Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy) Chemical Geology 140 6979 10.1016/S0009-2541(97)00042-9.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C., 1989 X-ray Diffraction and the Identification and Analysis of Clay Minerals Oxford University Press NewYork 332 pp.Google Scholar
Mutlu, H. and Güleç, N., 1998 Hydrogeochemical outline of thermal waters and geothermometry application in Anatolia (Turkey) Journal of Volcanology and Geothermal Research 85 495515 10.1016/S0377-0273(98)00068-7.CrossRefGoogle Scholar
Mutlu, H. Sarıiz, K. and Kadir, S., 2005 Geochemistry and origin of the Şaphane alunite deposit, Western Anatolia, Turkey Ore Geology Reviews 26 3950 10.1016/j.oregeorev.2004.12.003.CrossRefGoogle Scholar
Nesbitt, H.W. and Markovics, G., 1997 Weathering of granidioritic crust, long-term storage of elements in weathering profiles and petrogenesis of siliciclastic sediments Geochimica et Cosmochimica Acta 61 16531670 10.1016/S0016-7037(97)00031-8.CrossRefGoogle Scholar
Njoya, A. Nkoumbou, C. Grosbois, C. Njopwouo, D. Njoya, D. Courtin-Nomade, A. Yvon, J. and Martin, F., 2006 Genesis of Mayouom kaolin deposit (western Cameroon) Applied Clay Science 32 125140 10.1016/j.clay.2005.11.005.CrossRefGoogle Scholar
Okut, M. Demirhan, M. and Köse, Z., 1978 Kütahya ili Emet - Simav ilçeleri kaolen zuhurları ve dolaylarının jeoloji raporu MTA Report No. 6309 (in Turkish, Unpublished).Google Scholar
Özcan, A. Göncüoğlu, M.C. Turan, N. Uysal, Şentürk, K. and Işık, A., 1988 Late Paleozoik evolution of the Kütahya- Bolkardağı belt METU Journal of Pure and Applied Sciences 21 211220.Google Scholar
Parry, W.T. Ballantyne, J.M. and Jacobs, D.C., 1984 Geochemistry of hydrothermal sericite from Roosevelt Hot Springs and the Tintic and Santa Rita porphyry copper systems Economic Geology 79 7286 10.2113/gsecongeo.79.1.72.CrossRefGoogle Scholar
Paterson, E. Swaffield, R. and Wilson, M.J., 1987 Thermal analysis A Handbook of Determinative Methods in Clay Mineralogy Glasgow, UK Blackie and Sons Limited 99132.Google Scholar
Pissaridges, A. Stewart, J.W.B. and Rennie, D.A., 1968 Influence of cation saturation of phosphorous adsorption by selected clay minerals Canadian Journal of Soil Science 48 151157 10.4141/cjss68-018.CrossRefGoogle Scholar
Ringwood, A.E., 1990 Slab-mantle interactions: Petrogenesis of intraplate magmas and structure of the upper mantle Chemical Geology 82 187207 10.1016/0009-2541(90)90081-H.CrossRefGoogle Scholar
Roy, P.D. and Smykatz-Kloss, W., 2007 REE geochemistry of the recent playa sediments from the Thar Desert, India: An implication to playa sediment provenance Chemie der Erde 67 5568 10.1016/j.chemer.2005.01.006.CrossRefGoogle Scholar
Saikia, N.J. Bharali, D.J. Sengupta, P. Bordoloi, D. Goswamee, R.L. Saikia, P.C. and Borthakur, P.C., 2003 Characterization, beneficiation and utilization of a kaolinite clay from Assam, India Applied Clay Science 24 93103 10.1016/S0169-1317(03)00151-0.CrossRefGoogle Scholar
Savaşcin, Y., 1978 Foça-Urla Neojen volkanitlerinin mineralojik jeokimyasal incelemesi ve kökensel yorumu Doçentlik Tezi, Ege Öniversitesi, Yerbilimleri Fakuültesi.Google Scholar
Savin, S.M. and Epstein, S., 1970 The oxygen and hydrogen isotope geochemistry of clay minerals Geochimica et Cosmochimica Acta 34 2542 10.1016/0016-7037(70)90149-3.CrossRefGoogle Scholar
Savin, S.M. Lee, M. and Bailey, S.W., 1988 Isotopic studies of phyllosilicates Hydrous Phyllosilicates Washington, D.C Mineralogical Society of America 189223 10.1515/9781501508998-012.CrossRefGoogle Scholar
Sayın, A., 2007 Origin of kaolin deposits: evidence from the Hisarcık (Emet-Kütahya) deposits, western Turkey Turkish Journal of Earth Sciences 16 7796.Google Scholar
Şener, M. and Gevrek, A.I., 1986 Simav-Emet-Tavşanlı yörelerinin hidrotermal alterasyon zonları Jeoloji Mühendisliği Dergisi 28 4349.Google Scholar
Seyitoğlu, G. Anderson, D. Nowel, G. and Scott, B.C., 1997 The evolution from Miocene potassic to Quaternary sodic magmatism in Western Turkey: implication for enrichment processes in the lithospheric mantle Journal of Volcanology and Geothermal Research 76 127147 10.1016/S0377-0273(96)00069-8.CrossRefGoogle Scholar
Sheppard, S.M.F. Nielsen, R.L. and Taylor, H.P., 1969 Oxygen and hydrogen isotope ratios of clay minerals from porphry copper deposits Economic Geology 64 755777 10.2113/gsecongeo.64.7.755.CrossRefGoogle Scholar
Sheppard, S.M.F., Valley, J.W. Taylor, HP Jr. O’Neil, J.R., 1986 Characterization and isotopic variations in natural waters Stable Isotopes in High-Temperature Geological Processes Washington, D.C Mineralogical Society of America 165184 10.1515/9781501508936-011.CrossRefGoogle Scholar
Sheppard, S.M.F. and Gilg, H.A., 1996 Stable isotope geochemisty of clay minerals; The story of sloppy, silky, lumpy and tough, Cairns-Smith (1971) Clay Minerals 31 124 10.1180/claymin.1996.031.1.01.CrossRefGoogle Scholar
Shikazono, N. Ogawa, Y. Utada, M. Ishiyama, D. Mizuta, T. Ishikawa, N. and Kubota, Y., 2008 Geochemical behavior of rare elements in hydrothermally altered rocks of the Kuroko mining area, Japan Journal of Geochemical Exploration 98 6579 10.1016/j.gexplo.2007.12.003.CrossRefGoogle Scholar
State Planning Organization of Turkey (2001) 8th Five-Year Development Plan, Mining Special Expert Commission Report, Volume 1, Industrial Minerals Sub-Commission, Ceramic clays—Kaolin—Pyrophyllite—Wollastonite—Talc Group, Ankara, 224 pp. ().Google Scholar
Taylor, S.R. and McLennan, S.M., 1985 The Continental Crust: Its Composition and Evolution Oxford, UK Blackwell.Google Scholar
Türkmenoğlu, A.G. and Işık, N.Y., 2008 Mineralogy, chemistry and potential utilization of clays from coal deposits in the Kütahya province, Western Turkey Applied Clay Science 42 6373 10.1016/j.clay.2007.11.006.CrossRefGoogle Scholar
Üstün, H. and Yetiş, C., 2007 Hisarcık (Emet-Kütahya) güneyinin Neojen stratigrafisi 60. Türkiye Jeoloji Kurultayı Bildiri Üzleri 460462.Google Scholar
Van der Marel, H.W. and Beutelspacher, H., 1976 Atlas of IR Spectroscopy of Clay Minerals and their Admixtures Amsterdam Elsevier.Google Scholar
Wilson, M.J. and Wilson, M.J., 1987 X-ray powder diffraction methods A Handbook of Determinative Methods in Clay Mineralogy Glasgow, UK Blackie & Sons Ltd 2698.Google Scholar
Winchester, J.A. and Floyd, P.A., 1977 Geochemical discrimination of different magma series and their differentiation products using immobile elements Chemical Geology 20 325343 10.1016/0009-2541(77)90057-2.CrossRefGoogle Scholar
Yeh, H.W. and Savin, S.M., 1977 Mechanism of burial metamorphism of argillaceous sediments: 3 O isotope evidence. Bulletin of the Geological Society of America 88 13211330 10.1130/0016-7606(1977)88<1321:MOBMOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Yıldız, A. and Kuşçu, M., 2001 Başören (Kütahya) bentonit yataklarının mineralojisi ve teknolojik özellikleri 10. Ulusal Kil Sempozyumu 269281.Google Scholar
Ziegler, K., 2006 Clay minerals of the Permian Rotliegend Group in the North Sea and adjacent areas Clay Minerals 41 355393 10.1180/0009855064110200.CrossRefGoogle Scholar