Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T17:56:45.720Z Has data issue: false hasContentIssue false

Mg-Bentonite in the Parnaíba Paleozoic Basin, Northern Brazil

Published online by Cambridge University Press:  01 January 2024

Simone Patrícia Aranha da Paz*
Affiliation:
UFPA — Universidade Federal do Pará, Instituto de Geociências, Laboratório de Caracterização Mineral, 66075-110, Belém, Pará, Brazil
Rômulo Simões Angélica
Affiliation:
UFPA — Universidade Federal do Pará, Instituto de Geociências, Laboratório de Caracterização Mineral, 66075-110, Belém, Pará, Brazil
Roberto de Freitas Neves
Affiliation:
UFPA — Universidade Federal do Pará, Instituto de Geociências, Laboratório de Caracterização Mineral, 66075-110, Belém, Pará, Brazil UFPA — Universidade Federal do Pará, Faculdade de Engenharia Química, 66075-110, Belém, Pará, Brazil
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bentonite deposits are rare in Brazil and most of their production comes from a single region. A new bentonite occurrence, the Formosa bentonite from northern Brazil, is described here. The occurrence is associated with altered Mesozoic volcanic rocks of the Parnaíba Sedimentary Basin, one of the largest continental flood basalt (CFB) provinces on Earth. The purpose of the present study was to evaluate the physical and chemical properties of a new smectite-bearing deposit in Brazil. Analysis has shown that the major mineral present in the Formosa bentonite is a dioctahedral smectite along with minor amounts of hematite, K-feldspar, and kaolinite. Quartz is absent. A Li+-saturation test (Hofmann-Klemen treatment) revealed a montmorillonite smectite; large interlayer-Mg2+ contents revealed by N2 adsorption/desorption and cation exchange capacity results suggested a Mg-bentonite. This characterization helped to explore the structure-functionality (reactivity) relationship and to develop index tests for industrial applications and the research of new materials.

Use of this material as a desiccant-grade bentonite is envisaged (desiccant-grade bentonites contain Mg2+ and/or Ca2+ as the dominant exchangeable cations), or it could be activated with Na+ for use in many industrial applications (e.g. as a drilling fluid or for pelletizing iron ore). The large areal occurrence of the flood basalts suggests the possibility of very large deposits of these bentonites, a promising new exploration target for this class of industrial minerals in northern Brazil.

Type
Article
Copyright
Copyright © Clay Minerals Society 2012

References

Amorim, L.V. Gomes, C.M. Lira, H.L. França, K.B. and Ferreira, H.C., 2004 Bentonites from Boa Vista, Brazil: physical, mineralogical and rheological properties Materials Research 7 583593.CrossRefGoogle Scholar
Aranha, I.B., 2007 Preparação, caracterização e propriedades de argilas organofílicas Unpublished PhD Thesis, Instituto de Química, Universidade Federal do Rio de Janeiro 156.Google Scholar
Beurlen, H., 1995 The mineral resources of the Borborema Province in Northeastern Brazil and its sedimentary cover: a review Journal of South American Earth Sciences 8 365376.CrossRefGoogle Scholar
Borden, D. and Giese, R.F., 2001 Baseline studies of the Clay Minerals Society Source Clays: cation exchange capacity measurements by the ammonia-electrode method Clays and Clay Minerals 49 444445.CrossRefGoogle Scholar
Christidis, G.E. and Huff, W.D., 2009 Geological aspects and genesis of bentonites Elements 5 9398.CrossRefGoogle Scholar
Coelho, J.M., 2009 Perfil da Bentonita. Ministério de Minas e Energia DNPM (Departamento Nacional da Produção Mineral), Relatório Técnico 43.Google Scholar
Cótica, L.F. Freitas, V.F. Santos, I.A. Barabach, M. Anaissi, F.J. Miyahara, R.Y. and Sarvezuk, P.W.C., 2011 Cobaltmodified Brazilian bentonites: Preparation, characterization, and thermal stability Applied Clay Science 51 187191.CrossRefGoogle Scholar
Góes, A.M.O. and Feijó, F.J., 1994 Bacia do Parnaíba, Rio de Janeiro Boletim de Geociências da Petrobras 8 5767.Google Scholar
Gopinath, T.R. Schuster, H.D. and Schuckmann, W.K., 1981 Modelo de ocorrência e gênese da argila bentonítica de Boa Vista, Campina Grande, Paraíba Revista Brasileira de Geociências 11 185192.Google Scholar
Grim, R.E., 1968 Clay Mineralogy New York McGraw-Hill Book Co. Inc. 596.Google Scholar
Guggenheim, S. and Koster Van Groos, A.F., 2001 Baseline studies of the Clay Minerals Society source clays: Thermal analysis Clays and Clay Minerals 49 433443.CrossRefGoogle Scholar
Güven, N., 2009 Bentonite - Clays for Molecular Engineering Elements 5 8992.CrossRefGoogle Scholar
Hang, P.T. and Brindley, G.W., 1970 Methylene blue absorption by clay minerals. Determination of surface areas and cation exchange capacities Clay and Clay Minerals 18 203212.CrossRefGoogle Scholar
Hofmann, U. and Klemen, R., 1950 Verlust der Austauschfähigkeit von Lithiuminonen an bentonit durch Erhitzung Zeitschrift für Anorganische und Allgemeine Chemie 262 9599.CrossRefGoogle Scholar
Leofanti, G. Padovan, M. Tozzola, G. and Venturelli, B., 1998 Surface area and pore texture of catalysts Catalysis Today 41 207219.CrossRefGoogle Scholar
Lima, E.A.M. and Leite, J.F., 1978 Projeto Estudo Global dos Recursos Minerais da Bacia do Parnaíba. Relatório Final da Etapa III CPRM, Companhia de Pesquisa de Recursos Minerais, Rio de Janeiro umeII 234.Google Scholar
Madejová, J. and Komadel, P., 2001 Baseline studies of the clay minerals society source clays: Infrared Methods Clays and Clay Minerals 49 410432.CrossRefGoogle Scholar
Marzoli, A. Renne, P.R. Picirillo, E.M. Ernesto, M. and De Min, A., 1999 Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province Science 284 616618.CrossRefGoogle ScholarPubMed
Merle, R. Marzoli, A. Bertrand, H. Reisberg, L. Verati, C. Zimmermann, C. Chiaradia, M. Bellieni, G. and Ernesto, M., 2011 40Ar/39Ar ages and Sr-Nd-Pb-Os geochemistry of CAMP tholeiites from Western Maranhão basin (NE Brazil) Lithos 122 137151.CrossRefGoogle Scholar
Milani, E.J. and Zalán, P.V., 1999 An outline of the geology and petroleum systems of the paleozoic interior basins of South America Episodes 22 199205.CrossRefGoogle Scholar
Moraes, D.S. Angélica, R.S. Costa, C.E.F. Rocha Filho, G.N. and Zamian, J.R., 2010 Mineralogy and chemistry of a new bentonite occurrence in the eastern Amazon region, northern Brazil Applied Clay Science 48 475480.CrossRefGoogle Scholar
Moraes, D.S. Angélica, R.S. Costa, C.E.F. Rocha Filho, G.N. and Zamian, J.R., 2011 Bentonite functionalized with propyl sulfonic acid groups used as catalysts in esterification reactions Applied Clay Science 51 209213.CrossRefGoogle Scholar
Neaman, A. Pelletier, M. and Villieras, F., 2003 The effects of exchanged cation, compression, heating and hydration on textural properties of bulk bentonite and its corresponding purified montmorillonite Applied Clay Science 22 153168.CrossRefGoogle Scholar
Paiva, L.B. Morales, A.R. and Valenzuela-Diaz, F.R., 2008 Organoclays: properties, preparation and applications Applied Clay Science 42 824.CrossRefGoogle Scholar
Pansu, M. and Gautheyrou, J., 2006 Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods Berlin Springer Verlag 993.CrossRefGoogle Scholar
Pereira, K.R.O. Hanna, R.A. Vianna, MMGR Pinto, C.A. Rodrigues, M.G.F. and Valenzuela-Diaz, F.R., 2005 Brazilian organoclays as nanostructures sorbents of petroleum derived hydrocarbons Materials Research 8 7780.CrossRefGoogle Scholar
Rezende, NGAM, 1997 Argilas Nobres e Zeólitas na Bacia do Parnaíba Final Report, Industrial Minerals Research Project Rio de Janeiro CPRM (Geological Survey of Brazil) 41.Google Scholar
Salerno, P. and Mendioroz, S., 2002 Preparation of Alpillared montmorillonite from concentrated dispersions Applied Clay Science 22 115123.CrossRefGoogle Scholar
Souza Santos, P., 1989 Ciência e Tecnologia de Argilas 1 376.Google Scholar
Todor, D.N., 1976 Thermal Analysis of Minerals Tunbridge Wells, England Abacus Press 256.Google Scholar
Van der Marel, H.W. and Beutelspacher, H., 1976 Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures Amsterdam Elsevier 396.Google Scholar
Vaz, P.T. Rezende, NGAM Wanderley Filho, J.R. and Travassos, W.A.S., 2007 Bacia do Parnaíba Boletim de Geociências da Petrobras 15 253263.Google Scholar
Vieira, M.G.A. Almeida Neto, A.F. Gimenes, M.L. and Silva, M.G.C., 2010 Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay Journal of Hazardous Materials 177 362371.CrossRefGoogle ScholarPubMed
Villalba, J.C. Constantino, V.R.L. and Anaissi, F.J., 2010 Iron oxyhydroxide nanostructured in montmorillonite clays: Preparation and characterization Journal of Colloid and Interface Science 349 4955.CrossRefGoogle ScholarPubMed
Wolters, F. Lagaly, G. Kahr, G. Nueesch, R. and Emmerich, K., 2009 A comprehensive characterization of dioctahedral smectites Clays and Clay Minerals 57 115133.CrossRefGoogle Scholar
Yildiz, A. and Kuscu, M., 2007 Mineralogy, chemistry and physical properties of bentonites from Baören, Kütahya, W. Anatolia, Turkey Clay Minerals 42 399414.CrossRefGoogle Scholar