Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T03:37:47.992Z Has data issue: false hasContentIssue false

Methylene Blue Absorption by Clay Minerals. Determination of Surface Areas and Cation Exchange Capacities (Clay-Organic Studies XVIII)

Published online by Cambridge University Press:  01 July 2024

Pham Till Hang
Affiliation:
Department of Geochemistry and Mineralogy, and Materials Research Laboratory, The Pennsylvania State University, University Park, Pa. 16802
G. W. Brindley
Affiliation:
Department of Geochemistry and Mineralogy, and Materials Research Laboratory, The Pennsylvania State University, University Park, Pa. 16802
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Under appropriate conditions, both surface areas and cation exchange capacities of clay minerals can be measured by absorption of methylene blue from aqueous solutions. The method has been applied to two kaolinites, one illite, and one montmorillonite, all initially saturated with Na+ ions. For Na-montmorillonite, the total area, internal plus external, is measured. For Ca-montmorillonite, entry of methylene blue molecules appears to be restricted by the much smaller expansion of the Ca- clay in water. X-ray diffraction data clarify the absorption behavior in Na- and Ca-montmorillonite, and in particular it is shown that two orientations of the methylene blue molecules are involved.

Résumé

Résumé

Dans les conditions appropriées, la superficie et la capacité d’échange de cations des minéraux argileux peuvent étre mesurés par absorption du bleu de méthylène des solutions aqueuses. La méthode a été appliquée à deux kaolins, une illite, et une montmorillonite, tous ayant été préalablement saturés d’ions Na+. Pour la montmorillonite-Na, la superficie totale, interne et externe, a été mesurée. Dans le cas de montmorillonite-Ca, l’entrée des molécules du bleu de méthylène semble être restrainte par la dilatation bien plus petite de l’argile-Ca dans de l’eau. Les données de la diffraction des rayons X expliquent le phénomène d’absorption dans montmorillonite-Na et -Ca et on voit, en particulier, qu’il existe deux orientations des molécules du bleu de méthylène.

Kurzreferat

Kurzreferat

Unter geeigneten Bedingungen können sowohl Flächeninhalte als auch Kationenaustauschvermögen von Tonmineralen durch Absorption von Methylenblau aus wässrigen Lösungen gemessen werden. Die Methode wurde auf zwei Kaolinite, einen Illit und einen Montmorillonit, die alle ursprünglich mit Na+ Ionen gesättigt waren, angewendet. Für Na-Montmorillonit wird die Gesamtfläche, innen sowie aussen, gemessen. Für Ca-Montmorillonit scheint der Eintritt der Methylenblaumoleküle dutch die viel geringere Ausdehnung des Ca-Tons in Wasser begrenzt zu sein. Das Absorptionsverhalten in Na- und Ca-Montmorillonit wird durch Röntgenbeugungsdaten klargelegt, und insbesonders wird gezeigt, dass zwei Orientierungen der Methylenblaumoleküle beteiligt sind.

Резюме

Резюме

Поглощение глинистыми минералами метиленового голубого из водных растворов при благоприятных условиях может быть использовано для измерения как площади поверхности, так и катионо-обменной емкости. Предложенная методика была применена для исследования двух каолинитов, одного иллита и одного монтмориллонита; все образцы первоначально насыщались ионами Nа+. Для Ка-монтмориллонита определена общая (внутренняя и внешняя) поверхность. У Са-монтмориллонита внедрение молекул метиленового голубого, по-видимому, вызывает меньшее разбухание в воде. Рентгеновские данные позволили объяснить агсорбционные свойства Na- и Са-монтмориллонитов и в частности указали на две ориентировки метиленового голубого.

Type
Research Article
Copyright
Copyright © 1970 The Clay Minerals Society

References

Barnard, A. J. Jr., Broad, W. S. and Flaschka, H. (1956). The ethylenediaminetetraacetic acid (EDTA) titration: Nature and methods of end-point detection (1): Chemist-Analyst 45, 8693, 111-112.Google Scholar
Barnard, A. J. Jr., Broad, W. C. and Flaschka, H. (1957). The ethylenediaminetetraacetic acid (EDTA) titration: Nature and methods of end-point detection (II): Chemist-Analyst 46, 1828.Google Scholar
Bergmann, K. and O'Konski, S. T. (1963). A spectroscopic study of methylene blue monomer, dimer, and complexes with montmorillonite: J. Phys. Chem. 67, 21692177.CrossRefGoogle Scholar
Bodenheimer, W. and Heller, L. (1968). Sorption of methylene blue by montmorillonite saturated with different cations: Israel J. Chem. 6, 307314.Google Scholar
Carlson, R. M. and Johnson, S. M. (1961). Chelometric titration of calcium and magnesium in plant tissue: J. Agr. Food Chem. 9, 460463.CrossRefGoogle Scholar
Fairbairn, P. E. and Robertson, R. H. S. (1957). Liquid limit and dye adsorption: Clay Minerals Bull. 3, 129136.CrossRefGoogle Scholar
Faruqi, F. A., Okuda, S. and Williamson, W. O. (1967). Chemisorption of methylene blue by kaolinite: Clay Minerals 7, 1931.CrossRefGoogle Scholar
Glaeser, R. and Mering, J. (1968). Domaines d'hydratation homogène des smectites: C. R. Acad. Sci. Paris, Série D, 267, 463466.Google Scholar
Greene-Kelly, R. (1955). Sorption of aromatic organic compounds by montmorillonite. I. Orientation studies: Trans. Faraday Soc. 51, 412424.CrossRefGoogle Scholar
Greene-Kelly, R. (1956). Montmorillonite complexes with saturated ring compounds: J. Phys. Chem. 60, 808809.CrossRefGoogle Scholar
Harward, M. E. and Brindley, G. W. (1966). Swelling properties of synthetic smectites: Clays and Clay Minerals 13, 209222.Google Scholar
Haxaire, A. and Bloch, J. M. (1956). Sorption de molécules organiques azotées par la montmorillonite. Etude du mécanisme. Bull. Soc. Franç. Minéral Crist. 79, 464475.Google Scholar
Hul, H. J. Van Den (1966). The specific surface area of silver iodide suspensions. Thesis, Univ. Utrecht.Google Scholar
Johnson, C. E. Jr.. (1957). Methylene blue adsorption and surface area measurements. Paper presented at the 131st National Meeting of the American Chemical Society, April 712.Google Scholar
Kalb, G. W. and Curry, R. V. (1969). Determination of surface area by surfactant adsorption in aqueous suspension—1. Dodecylamine hydrochloride: Clays and Clay Minerals 17, 4757.CrossRefGoogle Scholar
Kalousek, M. and Blahnik, R. (1955). Research on monomolecular films. III. Apparatus for the study of monomolecular films adsorbed at the mercury-water interface: Collection Czech. Chem. Commun. 20, 782788.CrossRefGoogle Scholar
Kipling, J. J. and Wilson, R. B. (1960). Adsorption of methylene blue in the determination of surface areas: J. Appl. Chem. (London) 10, 109113.CrossRefGoogle Scholar
Los, J. M. and Tompkins, S. K. (1956). Adsorption of methylene blue on a positively charged mercury surface: J. Chem. Phys. 24, 630.CrossRefGoogle Scholar
Nevins, M. J. and Weintritt, D. J. (1967). Determination of cation exchange capacity by methylene blue adsorption: Am. Ceram. Soc. Bull. 46, 587592.Google Scholar
Olphen, H. van (1968). Modification of the clay surface by pyridine-type compounds: J. Colloid Interface Sci. 28, 370376.CrossRefGoogle Scholar
Phelps, G. W. and Harris, D. L. (1967). Specific surface and dry strength by methylene blue adsorption: Am. Ceram. Soc. Bull. 47, 11461150.Google Scholar
Rabinowitch, E. and Epstein, L. F. (1941). Polymerization of dye stuffs in solution—Thionine and methylene blue: J. Am. Chem. Soc. 63, 6978.CrossRefGoogle Scholar
Rane, R. E. and Teichner, S. J. (1967). Détermination des surfaces spécifiques par adsorption de krypton: J. Chim. Phys. 401402.Google Scholar
Rich, C. I. (1961). Calcium determination for cation exchange capacity measurements: Soil Sci. 92, 226231.CrossRefGoogle Scholar
Shukevich, M. M. (1954). Problems of the determination of clay minerals by dye-staining methods: Dokl. Akad. Nauk SSSR 94, 327328.Google Scholar
Thompson, T. D. and Brindley, G. W. (1969). Absorption of pyrimidines, purines, and nucleosides by Na-, Mg-, and Cu(II)-illite. Clay-organic studies XVI: Am. Mineralogist 54, 858868.Google Scholar
Thompson, T. D., Wentworth, S. A. and Brindley, G. W. (1967). Hydration states of an expanded phlogopite in relation to interlayer cations: Clay Minerals 7, 4349.CrossRefGoogle Scholar
Worrall, W. (1958). Adsorption of basic dyestuffs by clays: Trans. Brit. Ceram. Soc. 57, 210217.Google Scholar
Young, D. M. and Crowell, A. D. (1962). Physical Adsorption of Gases. Butterworths, London 426 pp.Google Scholar