Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T10:37:37.303Z Has data issue: false hasContentIssue false

Methylation of Sepiolite and Palygorskite with Diazomethane

Published online by Cambridge University Press:  02 April 2024

María C. Hermosín
Affiliation:
Centro de Edafología y Biología Aplicada del Cuarto, C.S.I.C., Apartado 1052 E.P., 41080 Sevilla, Spain
Juan Cornejo
Affiliation:
Centro de Edafología y Biología Aplicada del Cuarto, C.S.I.C., Apartado 1052 E.P., 41080 Sevilla, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The methylation of the fibrous clays, sepiolite and palygorskite, should be facilitated by their large content of surface silanol groups and the low acidity and inaccessibility of coordinated water molecules. Infrared spectroscopy showed that the reaction of diazomethane with these clays resulted in the methylation of their silanol surface groups. The grafting of CH3 groups on the surfaces of these clays produced a decrease in the surface area due primarily to the lowering of the microporosity.

Type
Research Article
Copyright
Copyright © 1986, The Clay Minerals Society

References

Ahlrichs, J. L., Sema, C. J. and Serratosa, J. M., 1975 Structural hydroxyls in sepiolite Clays & Clay Minerals 23 119124.CrossRefGoogle Scholar
Aragon de la Cruz, F., 1965 Interlamellar sorption in a methylated montmorillonite Nature 205 381382.CrossRefGoogle Scholar
Bart, J. C., Cariati, F., Erre, L., Gessa, C., Micera, G. and Piu, P., 1979 Formation of polymeric species in the interlayer of bentonite Clays & Clay Minerals 27 429432.CrossRefGoogle Scholar
Bellamy, F., 1980 The Infrared Spectra of Complex Molecules, Vol. 2. London Chapman & Hall.CrossRefGoogle Scholar
Berger, G., 1941 The structure of montmorillonite: preliminary communication on the ability of clays and clay minerals to be methylated Chem. Weekbl. 38 4243.Google Scholar
Brown, G., Green-Kelly, R. and Norrish, K., 1952 Organic derivatives of montmorillonite Nature 169 756757.CrossRefGoogle Scholar
Brunauer, S., Denting, L. S., Denting, W. E. and Teller, E., 1940 On a theory of the Van der Waals adsorption of gases J. Amer. Chem. Soc. 62 17231732.CrossRefGoogle Scholar
Brunauer, S., Emett, P. H. and Teller, E., 1938 Adsorption of gases in multimolecular layers J. Amer. Chem. Soc. 60 309319.CrossRefGoogle Scholar
Deuel, H., 1952 Organic derivatives of clay minerals Clay Miner. Bull. 1 205214.CrossRefGoogle Scholar
Dollimore, D. and Heal, G. R., 1970 Pore-size distribution in typical adsorbent systems J. Colloid Interface Sci. 33 508519.CrossRefGoogle Scholar
Edelman, C. H., 1947 Relation entre les propriétés et la structure de quelques minéraux argileux Verre Silicates Ind. 21 36.Google Scholar
Femandez-Hemandez, M. N. and Ruiz-Hitzky, E., 1979 Interacciôn de isocianatos con sepiolita Clay Miner. 14 295305.CrossRefGoogle Scholar
Fripiat, J. J., Uytterhoeven, J., Schobinger, V. and Deuel, H., 1960 Etude physico-chimique de quelques dérivés organiques d’un silicagel Helv. Chim. Acta 43 176181.CrossRefGoogle Scholar
Gaynor, J. D. and MacTavish, D. C., 1981 Pentafluoro- benzyl, (trifluoromethyl)benzyl and diazomethane alkylation of bentazon for residue determination in soil by gas- chromatography J. Agric. Food Chem. 29 626631.CrossRefGoogle Scholar
Greenland, D. J. and Russell, E. W., 1955 Organoclay derivatives and the origin of the negative charge on clay particles Trans. Faraday Soc. 51 13001307.CrossRefGoogle Scholar
Hermosm, M. C. and Cornejo, J. (1984) Spain Patent 530405.Google Scholar
Lecloux, A. and Pirard, J. P., 1979 The importance of standard isotherms in the analysis of adsorption isotherms for determining the porous texture of solids J. Colloid Interface Sci. 70 265281.CrossRefGoogle Scholar
Lippens, B. C. and de Boer, J. H., 1965 Studies on pore systems in catalysis. V. The t-method J. Catalysis 4 319323.CrossRefGoogle Scholar
Lippens, B. C., Linsen, B. G. and de Boer, J. H., 1964 Studies on pore systems in catalysis. I. The adsorption of nitrogen, apparatus and calculation J. Catalysis 3 3237.CrossRefGoogle Scholar
Martin-Vivaldi, J. L. and Hendricks, S. B., 1952 Reactivity of the H ions of clays in nonpolar solutions. I. Action of diazomethane Anal. Edaf. Fisiol. Veg. 11 601629.Google Scholar
Mortland, M. M., 1968 Protonation of compounds at clay mineral surfaces Trans. 9th Congr. Int. Soil Sci. Soc., Adelaide, 1968, Vol. 1 Melbourne Int. Soc. Soil Sci. 691699.Google Scholar
Ruiz-Hitzky, E. and Fripiat, J. J., 1976 Organomineral derivatives obtained by reacting organochlorosilanes with the surface of silicates in organic solvents Clays & Clay Minerals 24 2531.CrossRefGoogle Scholar
Serna, C. J., VanScoyoc, G. E., Mortland, M. M. and Farmer, V. C., 1979 Infrared study of sepiolite and palygorskite surfaces Proc. Int. Clay. Conf, Oxford, 1978 Amsterdam Elsevier 197206.Google Scholar
Serna, C. J., VanScoyoc, G. E. and Ahlrichs, J. L., 1977 Hydroxyl groups and water in palygorskite Amer. Mineral. 62 784792.Google Scholar