Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T08:18:19.089Z Has data issue: false hasContentIssue false

Methods for Performing Atomic Force Microscopy Imaging of Clay Minerals in Aqueous Solutions

Published online by Cambridge University Press:  28 February 2024

Barry R. Bickmore
Affiliation:
Department of Geological Sciences, 4044 Derring Hall, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 USA
Michael F. Hochella Jr.
Affiliation:
Department of Geological Sciences, 4044 Derring Hall, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 USA
Dirk Bosbach
Affiliation:
Institut für Mineralogie, Universität Münster, Corrensstr. 24, 48149 Münster, Germany
Laurent Charlet
Affiliation:
Environmental Geochemistry Group, L.G.I.T., B.P. 53, F-38041 Grenoble Cedex 9, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Three methods were developed that allow for the imaging of any clay mineral in aqueous solutions with atomic force microscopy (AFM). The methods involve fixing the particles onto special substrates that do not complicate the imaging process, but hold the particles sufficiently so that they do not move laterally or float away during imaging. Two techniques depend on electrostatic attraction under circumneutral pH conditions, between the negatively charged clay particles and the high point of zero charge substrate (either aluminum oxide or polyethyleneimine-coated mica) whereas the third technique depends on adhesion to a thermoplastic film. The first electrostatic technique involves a polished single crystal α-Al2O3 (sapphire) substrate. This was used successfully as a substrate for clay-sized minerals with high permanent layer charge localized on the basal planes (phlogopite and vermiculite) and when the AFM was operated in TappingMode to limit the lateral forces between the probe tip and the particles. However, electrostatic attraction between the sapphire surface and clay minerals such as smectite and kaolinite (low or no permanent layer charge) is not sufficiently strong to adequately fix the particles for imaging. The second electrostatic technique involves a polyethyleneimine-coated mica surface designed to immobilize a larger variety of clay minerals (phlogopite, vermiculite, montmorillonite, and kaolinite), and in this technique weak bonding between the clay and the organic film is also a factor. The third technique, which does not depend on electrostatic attraction, fixes clay particles into the surface of a thermoplastic adhesive called Tempfix. This has proven useful for fixing and imaging relatively large clay particles with well-defined morphology. The Tempfix mount also requires imaging in TappingMode because the Tempfix is relatively soft.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

References

Alince, B P J and van de Ven, T.G.M., 1991 Kinetics of colloidal particle deposition on pulp fibers 1. Deposition of clay on fibers of opposite charge Colloids and Surfaces 59 265277 10.1016/0166-6622(91)80251-I.CrossRefGoogle Scholar
Aly, S.M. and Letey, J., 1988 Polymer and water quality effects on flocculation of montmorillonite Soil Science Society of America Journal 52 14531458 10.2136/sssaj1988.03615995005200050047x.CrossRefGoogle Scholar
Anderson, S.J. and Sposito, G., 1991 Cesium-adsorption method for measuring accessible structural surface charge Soil Science Society of America Journal 55 15691576 10.2136/sssaj1991.03615995005500060011x.CrossRefGoogle Scholar
Baes, C.F. Jr. and Mesmer, R.E., 1976 The Hydrolysis of Cations New York John Wiley and Sons.Google Scholar
Bailey, S.W. and Bailey, S.W., 1984 Classification and structures of the micas Micas, Reviews in Mineralogy, Volume 13 Washington, D.C. The Mineralogical Society of America 112.Google Scholar
Blum, A.E., Nagy, K.L. and Blum, A.E., 1994 Determination of illite/smectite particle morphology using scanning force microscopy Scanning Probe Microscopy of Clay Minerals Boulder, Colorado The Clay Minerals Society 171202.Google Scholar
Blum, A.E. Eberl, D.D., Kharaka, Y.K. and Maest, A.S., 1992 Determination of clay particle thicknesses and morphology using scanning force microscopy Water-Rock Interaction Rotterdam A.A. Balkema 133140.Google Scholar
Böhmer, M.R. Evers, O.A. and Scheutjens, J.M.H.M., 1990 Weak polyelectrolytes between two surfaces: Adsorption and stabilization Macromolecules 23 22882301 10.1021/ma00210a027.CrossRefGoogle Scholar
Bosbach, D. and Hochella, M.F. Jr., 1996 Gypsum growth in the presence of growth inhibitors: A scanning force microscopy study Chemical Geology 132 227236 10.1016/S0009-2541(96)00059-9.CrossRefGoogle Scholar
Bosbach, D. and Rammensee, W., 1994 In situ investigation of growth and dissolution on the (010) surface of gypsum by scanning force microscopy Geochimica et Cosmochimica Acta 58 843849 10.1016/0016-7037(94)90509-6.CrossRefGoogle Scholar
Bosbach, D. Jordan, G. and Rammensee, W., 1995 Crystal growth and dissolution kinetics of gypsum and fluorite: An in situ scanning force microscope study European Journal of Mineralogy 7 267278 10.1127/ejm/7/2/0267.CrossRefGoogle Scholar
Bosbach, D. Junta-Rosso, J.L. Becker, U. and Hochella, M.F. Jr., 1996 Gypsum growth in the presence of background electrolytes studied by scanning force microscopy Geochimica et Cosmochimica Acta 60 32953304 10.1016/0016-7037(96)00147-0.CrossRefGoogle Scholar
Brady, P.V. Cygan, R.T. and Nagy, K.L., 1996 Molecular controls on kaolinite surface charge Journal of Colloid and Interface Science 183 356364 10.1006/jcis.1996.0557.CrossRefGoogle ScholarPubMed
Briggs, D., Briggsand, D. and Seah, M.P., 1990 Applications of XPS in polymer technology Practical Surface Analysis, 2nd edition, Volume 1: Auger and X-ray Photoelectron Spectroscopy New York John Wiley & Sons 437483.Google Scholar
Charlet, L. Schindler, P.W. Spadini, L. Furrer, G. and Zysset, M., 1993 Cation adsorption on oxides and clays: The aluminum case Aquatic Science 55 291303 10.1007/BF00877274.CrossRefGoogle Scholar
Claesson, P.M. Paulson, O.E.H. Blomberg, E. and Burns, N.L., 1997 Surface properties of poly(ethylene imine)-coated mica surfaces—salt and pH effects Colloids and Surfaces A 123–124 341353 10.1016/S0927-7757(96)03807-1.CrossRefGoogle Scholar
Dahlgren, M.A.G. Waltermo, Blomberg, E. Claesson, P.M. Sjöström, L. Åkesson, T. and Jönsson, B., 1993 Salt effects on the interaction between adsorbed cationic polyelectrolyte layers—Theory and experiment Journal of Physical Chemistry 97 1176911775 10.1021/j100147a033.CrossRefGoogle Scholar
de la Calle, C. Suquet, H. and Bailey, S.W., 1988 Vermiculite Hydrous Phyllosilicates (Exclusive of Micas), Reviews in Mineralogy, Volume 19 Washington, D.C. Mineralogical Society of America 455496 10.1515/9781501508998-017.CrossRefGoogle Scholar
Dove, P. Chermak, J., Nagy, K.L. and Blum, A.E., 1994 Mineral-water interactions: Fluid cell applications of scanning force microscopy Scanning Probe Microscopy of Clay Minerals Boulder, Colorado The Clay Minerals Society 139169.Google Scholar
Dove, P.M. and Hochella, M.F. Jr., 1993 Calcite precipitation mechanisms and inhibition by orthophosphate: In situ observations by scanning force microscopy Geochimica et Cosmochimica Acta 57 705714 10.1016/0016-7037(93)90381-6.CrossRefGoogle Scholar
Drake, B. Prater, C.B. Weisenhorn, A.L. Gould, S.A.C. Albrecht, T.R. Quate, C.F. Canneli, D.S. Hansma, H.G. and Hansma, P.K., 1989 Imaging crystals, polymers, and processes in water with the atomic force microscope Science 243 15861588 10.1126/science.2928794.CrossRefGoogle ScholarPubMed
Gaber, B.P. and Brandow, S.L., 1993 Imaging of cylindrical microstructures in halloysite using atomic force microscopy Rocks and Minerals 68 123.Google Scholar
Garnaes, J. Lindgreen, H. Hansen, P.L. Gould, S.A.C. and Hansma, P.K., 1992 Atomic force microscopy of ultrafine clay particles Ultramicroscopy 42–44 14281432 10.1016/0304-3991(92)90460-2.CrossRefGoogle Scholar
Grantham, M.C. and Dove, P.M., 1996 Investigation of bacterial-mineral interactions using fluid Tapping Mode atomic force microscopy Geochimica et Cosmochimica Acta 60 24732480 10.1016/0016-7037(96)00155-X.CrossRefGoogle Scholar
Greenberg, A.E. Clesceri, L.S. and Eaton, A.D., 1992 Standard Methods for the Examination of Water and Wastewater Washington D.C. American Public Health Association 5 11–5-13.Google Scholar
Gregory, J., 1989 Fundamentals of flocculation Critical Reviews in Environmental Control 19 185230 10.1080/10643388909388365.CrossRefGoogle Scholar
Güven, N. and Bailey, S.W., 1988 Smectites Hydrous Phyllosilicates (Exclusive of Micas), Reviews in Mineralogy, Volume 19 Washington, D.C. Mineralogical Society of America 497560 10.1515/9781501508998-018.CrossRefGoogle Scholar
Hansma, P.K. Cleveland, J.P. Radmacher, M. Walters, D.A. Hillner, P.E. Bezanilla, M. Fritz, M. Vie, D. Hansma, H.G. Prater, C.B. Massie, J. Fukunaga, L. Gurley, J. and Elings, V., 1994 Tapping mode atomic force microscopy in liquids Applied Physics Letters 64 17381740 10.1063/1.111795.CrossRefGoogle Scholar
Hartley, P.G. Larson, I. and Scales, P.J., 1997 Electrokinetic and direct force measurements between silica and mica surfaces in dilute electrolyte solutions Langmuir 13 22072214 10.1021/la960997c.CrossRefGoogle Scholar
Hillner, P.E. Gratz, A.J. Manne, S. and Hansma, P.K., 1992 Atomic-Scale imaging of calcite and dissolution in real time Geology 20 359362 10.1130/0091-7613(1992)020<0359:ASIOCG>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Hochella, M.F. Jr., Vaughan, D.J. and Patrick, R.A.D., 1995 Mineral surfaces: Their characterization and their chemical, physical and reactive nature Mineral Surfaces London Chapman & Hall 1760.Google Scholar
Hochella, M.F. Jr. and Carim, A.H., 1988 A reassessment of electron escape depths in silicon and thermally grown silicon dioxide thin films Surface Science 197 L260 L268 10.1016/0039-6028(88)90625-5.CrossRefGoogle Scholar
Johnson, C.A., 1995 Applications of scanning probe microscopy part 4: AFM imaging in fluids for the study of colloidal particle adsorption American Laboratory 27 12.Google Scholar
Johnsson, P.A. and Hochella, M.F. Jr. Parks, G.A., Kharaka, Y.K. and Maest, A.S., 1992 Direct observation of muscovite basal-plane dissolution and secondary phase formation: An XPS, LEED, and SFM study Water Rock Interaction Rotterdam A.A. Balkema 159162.Google Scholar
Junta, J.L. and Hochella, M.F. Jr., 1994 Manganese (II) oxidation at mineral surfaces: A microscopic and spectroscopic study Geochimica et Cosmochimica Acta 58 49854999 10.1016/0016-7037(94)90226-7.CrossRefGoogle Scholar
Junta-Rosso, J.L. and Hochella, M.F. Jr. and Rimstidt, J.D., 1997 Linking microscopic and macroscopic data for heterogeneous reactions illustrated by the oxidation of manganese (II) at mineral surfaces Geochimica et Cosmochimica Acta 61 149159 10.1016/S0016-7037(96)00329-8.CrossRefGoogle Scholar
Kodama, H. Ross, G.J. Iiyama, J.T. and Robert, J.-L., 1974 Effect of layer charge location on potassium exchange and hydration of micas American Mineralogist 59 491495.Google Scholar
Liang, Y. Baer, D.R. McCoy, J.M. Amonette, J.E. and LaFemina, J.P., 1996 Dissolution kinetics at tne calcitewater interface Geochimica et Cosmochimica Acta 60 48834887 10.1016/S0016-7037(96)00337-7.CrossRefGoogle Scholar
Lindgreen, H. Gamaes, J H PL Besenbacher, F. Laegsgaard, E. Stensgaard, I. Gould, S.A.C. and Hansma, P.K., 1991 Ultrafine particles of North Sea illite/smectite clay minerals investigated by STM and AFM American Mineralogist 76 12181222.Google Scholar
Luckham, P.E. and Klein, J., 1984 Forces between mica surfaces bearing adsorbed polyelectrolyte, poly-L-lysine, in aqueous media Journal of the Chemical Society, Faraday Transactions I 80 865878 10.1039/f19848000865.CrossRefGoogle Scholar
McDaniel, P.A. Falen, A.L. Tice, K.R. Graham, R.C. and Fendorf, S.E., 1995 Beidellite in E horizons of northern Idaho spodosols formed in volcanic ash Clays and Clay Minerals 43 525532 10.1346/CCMN.1995.0430502.CrossRefGoogle Scholar
Nagy, K.L., Nagy, K.L. and Blum, A.E., 1994 Application of morphological data obtained using scanning force microscopy to quantification of fibrous illite growth rates Scanning Probe Microscopy of Clay Minerals Boulder, Colorado The Clay Minerals Society 203239.Google Scholar
Nagy, K.L. and Blum, A.E., 1994 Scanning Probe Microscopy of Clay Minerals Boulder, Colorado The Clay Minerals Society.CrossRefGoogle Scholar
Putnis, A. Junta-Rosso, J.L. and Hochella, M.F. Jr., 1995 Dissolution of barite by a chelating ligand: An atomic force microscopy study Geochimica et Cosmochimica Acta 59 46234632 10.1016/0016-7037(95)00324-X.CrossRefGoogle Scholar
Ruehrwein, R.A. and Ward, D.W., 1952 Mechanism of clay aggregation by polyelectrolytes Soil Science 73 485492 10.1097/00010694-195206000-00007.CrossRefGoogle Scholar
Seah, M.P., Briggsand, D. and Seah, M.P., 1990 Quantification of AES and XPS. I Practical Surface Analysis, 2nd edition, Volume 1: Auger and X-ray Photoelectron Spectroscopy New York John Wiley & Sons 201255.Google Scholar
Sharp, T.G. Banin, A. and Buseck, P.R., 1992 Morphology and structure of montmorillonite surfaces with atomic-force microscopy American Chemical Society Abstracts 203 52.Google Scholar
Sposito, G., Buffle, J. and van Leeuwen, H.P., 1992 Characterization of particle surface charge Environmental Particles, Volume 1 Boca Raton, Florida Lewis Publishers 291314.Google Scholar
Stumm, W., 1992 Chemistry of the Solid-Water Interface New York John Wiley & Sons.Google Scholar
Sumner, M.E., Sumner, M.E. and Stewart, B.A., 1992 The electrical double layer and clay dispersion Soil Crusting: Chemical and Physical Processes Boca Raton, Florida Lewis Publishers 131.Google Scholar
van Olphen, H. and Fripiat, J.J., 1979 Data Handbook for Clay Materials and Other Non-Metallic Minerals New York Pergamon Press.Google Scholar
Walther, J.V., 1996 Relation between rates of aluminosilicate mineral dissolution, pH, temperature, and surface charge American Journal of Science 296 693728 10.2475/ajs.296.7.693.CrossRefGoogle Scholar
Zbik, M. and Smart, R.S.C., 1998 Nano-morphology of kaolinites: Comparative SEM and AFM studies Clays and Clay Minerals 46 153160 10.1346/CCMN.1998.0460205.CrossRefGoogle Scholar