Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T04:37:22.327Z Has data issue: false hasContentIssue false

Metastability in Near-Surface Rocks of Minerals in The System Al2O3-SiO2-H2O

Published online by Cambridge University Press:  02 April 2024

Lawrence M. Anovitz
Affiliation:
Department of Geosciences, The University of Arizona, Tucson, Arizona 85721
Dexter Perkins
Affiliation:
Department of Geology and Geological Engineering and the North Dakota Mining and Mineral Resources Research Institute, The University of North Dakota, Grand Forks, North Dakota 58202
Eric J. Essene
Affiliation:
Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan 48109
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Gibbs free energies for phases in the system Al2O3-SiO2-H2O have been calculated from reversed experiments in order to correct earlier values and to calculate a phase diagram consistent with more recent experiments. An internally consistent diagram could not be calculated that agreed with all published experiments, and choices of preferred data were made. The following Gibbs free energies, relative to the elements at STP (298.15 K, 1 bar), have been derived

The above values were calculated assuming literature values for corundum, quartz, and H2O (v).

Examination of available thermodynamic, experimental, and observational data on the aluminum hydroxides gibbsite, boehmite, bayerite, and nordstrandite suggests that these minerals are metastable with respect to diaspore + water at STP and at higher temperatures. Similarly, halloysite and dickite are metastable with respect to kaolinite at these conditions. The occurrence of these minerals in soils must therefore be ascribed to nonequilibrium processes, and the use of equilibrium phase diagrams to explain their occurrence is inappropriate.

Type
Research Article
Copyright
Copyright © 1991, The Clay Minerals Society

Footnotes

1

Contribution No. 477 from the Mineralogical Laboratory, Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan.

References

Apps, J. A., Neil, J. M. and Jun, C.-H., 1989 Thermochemical properties of gibbsite, bayerite, boehmite, diaspore and the aluminate ion between 0 and 350°C .CrossRefGoogle Scholar
Barany, R. and Kelley, K. K., 1961 Heats and free energies of formation of gibbsite, kaolinite, halloysite, and dickite U.S. Bur. Mines Rept. Inv 5825 113.Google Scholar
Barnhisel, R. I. and Rich, C. I., 1965 Gibbsite, bayerite, and nordstrandite formation as affected by anions, pH, and mineral surfaces Soil Sci. Soc. Amer. Proc 29 531534.CrossRefGoogle Scholar
Berman, R. G., 1988 Internally consistent thermodynamic data set for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2 J. Petrol 29 445522.CrossRefGoogle Scholar
Bosmans, H. H., 1970 Unit cell and crystal structure of nordstrandite, Al(OH)3 Acta Crystallogr B26 649652.CrossRefGoogle Scholar
Brace, W. F., Scholz, C. H. and Lamori, P. N., 1969 Isothermal compressibilities of kyanite, andalusite, and sillimanite from synthetic aggregates J. Geophys. Res 74 20892098.CrossRefGoogle Scholar
Burnham, C. W., Holloway, J. R. and Davis, N. F. (1969) Thermodynamic properties of water to 1,000°C and 10,000 bars: Geol. Soc. Amer. Spec. Pap. 137, 96 pp.Google Scholar
Bye, J. C. and Robinson, J. G., 1964 Crystallization processes in aluminum hydroxide gels Kolloid-Z.Z. Polym 198 5360.CrossRefGoogle Scholar
Chesworth, W., 1972 The stability of gibbsite and boehmite at the surface of the Earth Clay & Clay Minerals 20 369374.CrossRefGoogle Scholar
Chesworth, W., 1975 Soil minerals in the system Al2O3-SiO2-H2O: Phase equilibrium model Clays & Clay Minerals 23 5560.CrossRefGoogle Scholar
Chesworth, W., 1978 Comments on a working model of some equilibria in the system alumina-silica-water by H. W. Day Amer. J. Sci 278 10181019.CrossRefGoogle Scholar
Chesworth, W., 1980 Are considerations of mineralogical equilibrium relevant to pedology? Evidence from a weathered granite in central France Soil Sci 130 290292.CrossRefGoogle Scholar
Chesworth, W., 1980 The haplosoil system Amer. J. Sci 280 969985.CrossRefGoogle Scholar
Clark, S. P. Jr. (1966) Handbook of physical constants: Geol. Soc. Amer. Mem. 97, 587 pp.Google Scholar
Dachille, F. and Gigi, P., 1983 Two high-pressure Al(OH)3 phases and contributions to the Al-Al2O3-H2O system High Temp. High Pres 15 657675.Google Scholar
Day, H. W., 1976 A working model of some equilibria in the system alumina-silica-water Amer. J. Sci 276 12541284.CrossRefGoogle Scholar
Fyfe, W. S. and Hollander, M. A., 1964 Equilibrium dehydration of diaspore at low temperatures Amer. J. Sci 262 709712.CrossRefGoogle Scholar
Fyfe, W. S., Turner, F. J. and Verhoogen, J., 1958 Meta-morphic reactions and metamorphic facies Geol. Soc. Amer. Mem 75 2151.Google Scholar
Haas, H., 1972 Diaspore-corundum equilibria determined by epitaxis of diaspore on corundum Amer. Mineral 57 13751385.Google Scholar
Haas, H. and Holdaway, M. J., 1973 Equilibria in the system Al2O3-SiO2-H2O involving the stability limits of pyrophyllite and thermodynamic data of phyrophyllite Amer. J. Sci 273 449461.CrossRefGoogle Scholar
Haas, J. L. Jr. Robinson, G. R. Jr. and Hemingway, B. R., 1981 Thermodynamic tabulations for selected phases in the system CaO-Al2O3-SiO2 at 101.325 kPa (1 atm) between 273.15 and 1800 K J. Phys. Chem. Ref. Data 10 575669.CrossRefGoogle Scholar
Hathaway, J. C. and Schlanger, S. O., 1965 Nordstrandite, Al2O3 · 3H2O, from Guam Amer. Mineral 50 10291037.Google Scholar
Helgeson, H. C., Delaney, J. M., Nesbitt, H. W. and Bird, D. K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals: Amer. J. Sci. 278–A, 229 pp.Google Scholar
Hem, J. D. and Roberson, C. E. (1967) Form and stability of aluminum hydroxide complexes in dilute solutions: U.S. Geol. Surv. Water Supply Pap. 1827–A, 55 pp.Google Scholar
Hemingway, B. S., 1982 Gibbs free energies of formation for bayerite, nordstrandite, Al(OH)2+, and Al(OH)2 +, aluminum mobility, and the formation of bauxites and laterites Adv. Phys. Geochemi 2 285316.Google Scholar
Hemingway, B. S. and Robie, R. A., 1973 A calorimetric determination of the standard enthalpies of formation of huntite, CaMg(CO3)4 and artinite, Mg2(OH)2CO2 · 3H2O and their standard Gibbs free energies of formation U.S. Geol. Surv. J. Res 1 535541.Google Scholar
Hemingway, B. S., Robie, R. A. and Kittrick, J. A., 1978 Revised values for the Gibbs free energy of formation of Al(OH)4 -(aq), diaspore, boehmite and bayerite at 298.15 K and 1 bar, the thermodynamic properties of kaolinite to 800 K and 1 bar, and the heats of solution of several gibbsite samples Geochim. Cosmochim. Acta 42 15331543.CrossRefGoogle Scholar
Hemingway, B. S., Sposito, G. and Sposito, G., 1990 Inorganic aluminum-bearing solid phases The Environmental Chemistry of Aluminum Boca Raton, Florida CRC Press Inc..Google Scholar
Hemley, J. J., Montoya, J. W., Marinenko, J. W. and Luce, R. W., 1980 Equilibria in the system Al2O3-SiO2-H2O and some general implications for alteration/mineralization processes Econ. Geol 75 210228.CrossRefGoogle Scholar
Holdaway, M. J., 1971 The stability of andalusite and the aluminosilicate phase diagram Amer. J. Sci 257 563573.Google Scholar
Hsu, P. H., Dixon, J. B. and Weed, S. B., 1977 Aluminum hydroxides and oxyhydroxides Minerals in Soil Environments 145180.Google Scholar
Huang, W. H., 1974 Stabilities of kaolinite and halloysite in relation to weathering of feldspars and nepheline in aqueous solution Amer. Mineral 59 365371.Google Scholar
Jamieson, J. C. and Olinger, B., 1969 Pressure-temperature studies of anatase, brookite, and rutile and TiO2(II): A discussion Amer. Mineral 54 14771480.Google Scholar
Jiang, W.-T. Essene, E. J. and Peacor, D. R., 1990 A transmission electron microscopic study of co-existing pyrophyllite and muscovite: Direct evidence for the metast-ability of illite Clays & Clay Minerals 38 225240.CrossRefGoogle Scholar
Kerrick, D. M., 1968 Experiments on the upper stability of pyrophyllite at 1.8 kb and 3.9 kb pressure Amer. J. Sci 206 204214.CrossRefGoogle Scholar
Kerrick, D. M. and Jacobs, G. K., 1981 A modified Redlich-Kwong equation for H2O, CO2 and their mixtures at elevated pressures and temperatures Amer. J. Sci 281 735767.CrossRefGoogle Scholar
Kitterick, J. A., 1966 Free energy of formation of kaolinite from solubility measurements Amer. Mineral 51 14571466.Google Scholar
Kitterick, J. A., 1970 Precipitation of kaolinite at 25°C and 1 atm Clays & Clay Minerals 18 261267.CrossRefGoogle Scholar
Kitterick, J. A., 1980 Gibbsite and kaolinite solubilities by immiscible displacement of equilibrium solutions Soil Sci. Soc. Amer. J 44 139142.CrossRefGoogle Scholar
Kraus, I., 1968 Mineralogical-genetic study of clay sediments from the Poltar formation, southern Slovakia Geol. Sbornik 19 389406.Google Scholar
Kwong, K F N K and Huang, T. M., 1979 The relative influence of low-molecular-weight complexing organic acids on the hydrolysis and precipitation of aluminum Soil Sci 128 337342.CrossRefGoogle Scholar
La Iglesia, A. and Galan, E., 1975 Halloysite-kaolinite transformation at room temperature Clays & Clay Minerals 23 109113.CrossRefGoogle Scholar
Lee, J. H. and Guggenheim, S., 1981 Single crystal X-ray refinement of pyrophyllite-1Tc Amer. Mineral 66 350357.Google Scholar
Lind, C. J. and Hem, J. D. (1975) Chemistry of aluminum in natural water. Effects of organic solutes on chemical reactions of aluminum: U.S. Geol. Surv. Water-Supply Pap. 1827–G, 83 pp.Google Scholar
Matushima, S., Kennedy, G. C., Akella, J. and Haygarth, J., 1967 A study of the equilibrium relations in the systems Al2O3-SiO2-H2O and Al2O3-H2O Amer. J. Sci 265 2844.CrossRefGoogle Scholar
May, H. M., Helmke, P. A. and Jackson, M. L., 1979 Gibbsite solubility and thermodynamic properties of hydoxy-aluminum ions in aqueous solutions at 25°C Geochim. Cosmochim. Acta 43 861868.CrossRefGoogle Scholar
Mitsuhashi, T. and Kleppa, O. J., 1979 Transformation enthalpies of the titanium dioxide polymorphs J. Amer. Ceram. Soc 62 356357.CrossRefGoogle Scholar
Neuhaus, A. and Heide, H., 1965 Hydrothermaluntersuchungen im System Al2O3-H2O(1): Zustansgrebzen und Stabilitätsverhahnisse vom Böhmit, Diaspor, und Korund im Drückbereich >50 bar Deut. Ker. Gesell. Fachausschussbericht 42 167181.Google Scholar
Parks, G. A., 1972 Free energies of formation and aqueous solubilities of aluminum hydroxides and oxide hydroxides at 25°C Amer. Mineral 57 11631189.Google Scholar
Perkins, D. P. I. Essene, E. J., Westrum, E. F. Jr. and Wall, V.J., 1979 New thermodynamic data for diaspore and their application to the system Al2O3-SiO2-H2O Amer. Mineral 64 10801090.Google Scholar
Perkins, D., Essene, E. J. and Wall, V. J., 1987 THERMO: A computer program for calculation of mixed-volatile equilibria Amer. Mineral 72 446447.Google Scholar
Polzer, W. L. and Hem, J. D., 1965 The dissolution of kaolinite J. Geophys. Res 70 62336240.CrossRefGoogle Scholar
Reed, B. L. and Hemley, J. J., 1966 Occurrence of py-rophyllite in the Kekiktuk Conglomerate, Brooks Range, northeastern Alaska U.S. Geol. Surv. Prof. Pap 550C 162166.Google Scholar
Robie, R. A. and Hemingway, B. S., 1973 The enthalpies of formation of nesquehonite, MgCO3 · 3H2O, and hydromagnesite, 5MgO · 4CO2 · 5H2O U.S. Geol. Surv. J. Res 1 543547.Google Scholar
Robie, R. A., Hemingway, B. S. and Fisher, J. R. (1979) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures: U.S. Geol. Surv. Bull. 1452, 456 pp.Google Scholar
Robie, R. A. and Hemingway, B. S., 1984 Entropies of kyanite, andalusite, and sillimanite: Additional constraints on the pressure and temperature of the Al2SiO5 triple point Amer. Mineral 69 298306.Google Scholar
Robinson, G. R., Haas, J. L. Jr., Schafer, C. M. and Haselton, H. T. (1982) Thermodynamic and thermophysical properties of selected phases in the MgO-SiO2-H2O-CO2, CaO-Al2O3-SiO2-H2O-CO2, and Fe-FeO-Fe2O3-SiO2 chemical systems, with special emphasis on the properties of basalts and their mineral components: U.S. Geol. Surv. Open-File Rept. 83–79, 429 pp.Google Scholar
Ross, G.J. and Turner, R.C., 1971 Effect of different anions on the crystallization of aluminum hydroxide in partially neutralized aqueous aluminum salt systems Soil Sci. Soc. Amer. Proc 35 389392.CrossRefGoogle Scholar
Rothbauer, R., Zigan, F. and O’Daniel, H., 1967 Refinement of the structure of bayerite, Al(OH)3. Proposed positions of hydrogen atoms Z. Kristallogr 125 317331.CrossRefGoogle Scholar
Russell, A. S., Edwards, J. D. and Taylor, C. S., 1955 Solubility of hydrated aluminas in NaOH solutions Amer. Inst. MiningMetal. Eng. Trans., J. Metals 203 11231128.Google Scholar
Schoen, R. and Roberson, C. E., 1970 Structures of aluminum hydroxide and geochemical implications Amer. Mineral 55 4377.Google Scholar
Shah, S. H. A., 1976 The laterite band of Siarat, Sibi, and Loralai districts, Baluchistan, Pakistan Rec. Geol. Surv. Pakistan 37 1526.Google Scholar
Slaughter, J., Wall, V. J. and Kerrick, D. M., 1976 APL computer programs for thermodynamic calculations of equilibria in P-T-XCO2 space Contrib. Mineral. Petrol 54 157171.CrossRefGoogle Scholar
Smith, R. W. and Hem, J. D. (1972) Effect of aging on aluminum hydroxide complexes in dilute aqueous solutions: U.S. Geol. Surv. Water Supply Pap. 1827–D, 51 pp.Google Scholar
Taylor, L. A. and Bell, P. M., 1969 Thermal expansion of pyrophyllite Ann. Rep. Geophys. Lab., Carnegie Inst., Washington, D.C 69 193194.Google Scholar
Thompson, A. B., 1970 A note on the kaolinite-pyrophyllite equilibrium Amer. J. Sci 268 454458.CrossRefGoogle Scholar
Tsuzuki, Y. and Kawabe, I., 1983 Polymorphic transformations of kaolin minerals in aqueous solutions Geochim. Cosmochim. Acta 47 5966.CrossRefGoogle Scholar
Turner, R. C. and Ross, G. J., 1970 Conditions in solution during the formation of gibbsite in dilute Al salt solutions. 4. Effect of Cl concentration and temperature and a proposed mechanism for gibbsite formation Can. J. Chem 48 723729.CrossRefGoogle Scholar
Vaidya, S. N., Bailey, S., Pasternack, T. and Kennedy, G. C., 1973 Compressibility of fifteen minerals to 45 kilobars J. Geophys. Res 78 68936898.CrossRefGoogle Scholar
Velde, B. and Kornprobst, J., 1969 Stabilité, des silicates d’alumine hydrates Contrib. Mineral. Petrol 21 6374.CrossRefGoogle Scholar
Violante, A. and Violante, P., 1980 Influence of pH, concentration, and chelating power of organic anions on the synthesis of aluminum hydroxides and oxyhydroxides Clays & Clay Minerals 28 425435.CrossRefGoogle Scholar
Volochaev, F Ya Kud’yarov, I. S. and Petrenko, V. I., 1978 Minerals of the upper Devonian Laterite weathering crust of the middle Timan Metallog. Osad. i Osadoch.-Metamorf. Tolshch 91 6974.Google Scholar
Wilson, M. D. and Pittman, E. D., 1977 Authigenic clays in sandstones: recognition and influence on reservoir properties and paleoenvironmental analysis J. Sed. Petrol 47 331.Google Scholar
Winter, J. K. and Ghose, S., 1979 Thermal expansion and high-temperature crystal chemistry of Al2SiO5 polymorphs Amer. Mineral 64 573586.Google Scholar
Zen, E.-a., 1961 Mineralogy and petrology of the system Al2O3-SiO2-H2O in some pyrophyllite deposits of North Carolina Amer. Mineral 46 5266.Google Scholar