Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T07:56:10.509Z Has data issue: false hasContentIssue false

Mechanism of Adsorption and Desorption of Water Vapor by Homoionic Montmorillonite: 3. The Mg2+, Ca2+, Sr2+ and Ba2+ Exchanged Forms

Published online by Cambridge University Press:  28 February 2024

J. M. Cases
Affiliation:
Laboratoire Environnement et Minéralurgie et UA 235 du CNRS, BP 40, 54501 Vandœuvre Cedex, France
I. Bérend
Affiliation:
Laboratoire Environnement et Minéralurgie et UA 235 du CNRS, BP 40, 54501 Vandœuvre Cedex, France
M. François
Affiliation:
Laboratoire Environnement et Minéralurgie et UA 235 du CNRS, BP 40, 54501 Vandœuvre Cedex, France
J. P. Uriot
Affiliation:
Centre de Recherches Pétrographiques et Géochimiques (CNRS-UPR 9046), BP 20, 54501 Vandœuvre Cedex, France
L. J. Michot
Affiliation:
Laboratoire Environnement et Minéralurgie et UA 235 du CNRS, BP 40, 54501 Vandœuvre Cedex, France
F. Thomas
Affiliation:
Laboratoire Environnement et Minéralurgie et UA 235 du CNRS, BP 40, 54501 Vandœuvre Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The swelling of some well-defined Mg-, Ca-, Sr- and Ba- homoionic montmorillonites was studied in the domain of water relative pressures lower than 0.95. This involves the expansion of the crystal lattice itself, commonly known as the “interlamellar expansion” or “inner crystalline swelling”. The initial freeze-dried clays were characterized by nitrogen adsorption-desorption volumetry and controlled transformation rate thermal analysis. The evolution of the structural and textural properties of these different clays at different stages of hydration and dehydration was investigated using water adsorption gravimetry, immersion microcalorimetry at different precoverage water vapor relative pressures and X-raydiffraction (XRD) under controlled humidity conditions. Large textural variations are observed in the dry state depending on the exchangeable cations. The 2-layer hydrate exhibits the most ordered layer stacking. Water is mainly adsorbed in the interlamellar space. With increasing water pressure, each homoionic species leads to a 1-layer hydrate and, with the exception of Ba-montmorillonite, to a predominant 2-layer hydrate. The relative pressure corresponding to the formation of the 2-layer hydrate decreases with increasing hydration energy of the interlayer cation. For Ca-, Sr- or Mg-montmoriHonites, simulation of XRD patterns leads to the definition of successive homogeneous states corresponding to the 2-layer hydrate. Furthermore, it yields the water filling ratio corresponding to the different hydration states during adsorption and desorption of water vapor.

Type
Research Article
Copyright
Copyright © 1997, The Clay Minerals Society

References

Ben Brahim, J., Armagan, N., Besson, G. and Tchoubar, C.. 1986. Méthode diffractométrique de caractérisation des états d'hydratation des smectites et stabilité relative des couches d'eau insérées. Clay Miner 21: 111124.CrossRefGoogle Scholar
Ben Ohoud, M. and Van Damme, H.. 1990. La texture fractale des argiles gonflantes. CR Acad Sci Paris, Ser II 311: 665670.Google Scholar
Ben Rhaiem, H., Tessier, D. and Pons, C.H.. 1986. Comportement hydrique et évolution structurale et texturale des montmorillonites au cours d'un cycle de dessication-humectation: I. Cas des montmorillonites calciques. Clay Miner 21: 929.CrossRefGoogle Scholar
Bérend, I.. 1991. Les mécanismes d'hydratation de montmorillonites homoiniques pour des pressions relatives inférieures à 0,95 [thèse de doctorat d'université]. Nancy, France: Institut National Polytechnique de Lorraine. 330 p.Google Scholar
Bérend, I., Cases, J.M., François, M., Uriot, J.P., Michot, L., Masion, A. and Thomas, F.. 1995. Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites: 2. The Li+, Na+, K+, Rb+ and the Cs+ exchanged form. Clays Clay Miner 43: 324336.CrossRefGoogle Scholar
Cases, J.M. and François, M.. 1982. Etude des propriétés de l'eau au voisinage des interfaces. Agronomie 2: 931938.CrossRefGoogle Scholar
Cases, J.M., Bérend, I., Besson, G., François, M., Uriot, J.P., Thomas, F. and Poirier, J.P.. 1992. Mechanism of adsorption-desorption of water vapor by homoionic montmorillonite. 1. The sodium exchanged form. Langmuir 8: 27302739.CrossRefGoogle Scholar
de Boer, J.H., Lippens, B.C., Linsen, B.G., Broekholf, J.C.P., Van der Heuvel, A. and Osinga, T.. 1966. The t-curve of multimolecular N2 adsorption. J Colloid Interface Sci. 21: 405414.CrossRefGoogle Scholar
Delon, J.F., Lietard, O., Cases, J.M. and Yvon, J.. 1986. Determination of porosity of platy material using slit-shaped pores and bevelled pores. Clay Miner 26: 361376.CrossRefGoogle Scholar
Del Pennino, U., Mazzega, E., Valeri, S., Alietti, A., Brigatti, M.F. and Poppi, L.. 1981. Interlayer, water and swelling properties of monoionic montmorillonites. J Colloid Interface Sci 84: 301309.CrossRefGoogle Scholar
Drits, V.A. and Tchoubar, C.. 1990. X-ray diffraction by disordered lamellar structures. Berlin: Springer-Verlag. 371 p.CrossRefGoogle Scholar
Emmett, P.H. and Brunauer, J.. 1937. The use of low temperature van der Waals adsorption isotherms in determinating the surface area by ion synthetic ammonia catalyst. J Amer Chem Soc 59: 15531564.CrossRefGoogle Scholar
Glaeser, R. and Méring, J.. 1968. Domaines d'hydratation homogène des smectites. CR Acad Sci Paris, Ser D 267: 463466.Google Scholar
Grillet, Y., Cases, J.M., François, M., Rouquerol, J. and Poirier, J.E.. 1988. Modification of the porous structure and surface area of sepiolite under vacuum thermal treatment. Clays Clay Miner 36: 233242.CrossRefGoogle Scholar
Hagymassy, J., Brunauer, S. and Mikhail, R.S.. 1969. Pore structure analysis by water vapor adsorption: I. t-curves for water vapor. J Colloid Interface Sci 29: 485491.CrossRefGoogle Scholar
Harkins, W.D.. 1952. The physical chemistry of surface film. New York: Reinhold. 411 p.Google Scholar
Iwasaki, T. and Watanabe, T.. 1988. Distribution of Ca and Na ions in dioctahedral smectites and interstratified dioctahedral mica-smectites. Clays Clay Miner 36: 7382.CrossRefGoogle Scholar
Kamel, M.W.. 1981. Etude de l'imbibition, du gonflement et du dessèchement de quelques argiles [thèse de doctorat d'université]. Toulouse, France: Université de Toulouse. 187 p.Google Scholar
Kawano, M. and Tomita, K.. 1991. X-ray powder reflection studies on the rehydration properties of beidellite. Clays Clay Miner 39: 7783.CrossRefGoogle Scholar
Kerm, A.G.. 1988. Etude et caractérisation des premiers stades d'hydratation d'une nontronite [thèse de doctorat d'université]. Orléans, France: Université d'Orléans. 56 p.Google Scholar
Mamy, J.. 1968. Recherches sur l'hydratation de la montmorillonite: Propriétés diélectriques et structure du film d'eau. Ann Agron 19(2-3): 175292.Google Scholar
Michot, L., François, M. and Cases, J.M.. 1990. Continuous volumetric procedure for gas adsorption: A means to study surface heterogeneity. Langmuir 6: 677681.CrossRefGoogle Scholar
Moore, D.M. and Hoover, J.. 1986. Ordered interstratification of dehydrated and hydrated Na-smectites. Clays Clay Miner 34: 379384.CrossRefGoogle Scholar
Newman, A.C.D.. 1987. The interaction of clays with clay mineral surfaces. In Newman, A.C.D., editor. Chemistry of clays and clay minerals. Birmingham, AL: Longman. p 237274.Google Scholar
Ormerod, E.C. and Newman, A.C.D.. 1983. Water sorption on Casaturated clays: II. Internal and external surfaces of montmorillonite. Clay Miner 18: 289299.CrossRefGoogle Scholar
Pézerat, H. and Méring, J.. 1967. Recherches sur la position des cations échangeables et de l'eau dans les montmorillonites. CR. Acad Sci Paris, Ser D 265: 529532.Google Scholar
Poinsignon, C. and Cases, J.M.. 1978. Etude de l'eau d'hydratation des cations compensateurs de smectites homoioniques. Bull Mineral 101: 469477.Google Scholar
Poirier, J.E., François, M., Cases, J.M. and Rouquerol, J.. 1987. Study of water adsorption on Na-montmorillonite: New data owing to the use of a continuous procedure. In: Liapis, A.I., editor. Proc 2nd Eng Foundation Conference on fundamentals of adsorption. New York: AIChE. p 473482.Google Scholar
Pons, C.H., Rousseaux, F. and Tchoubar, D.. 1981. Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l'étude du gonflement des smectites. I: Etude du système eau-montmorillonite-Na en fonction de la température. Clay Miner 16: 2342.CrossRefGoogle Scholar
Pons, C.H., Rousseaux, F. and Tchoubar, D.. 1982. Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l'étude du gonflement des smectites. II: Etude de différents systèmes eau-smectites en fonction de la température. Clay Miner 17: 327338.CrossRefGoogle Scholar
Pons, C.H., Pozzuoli, A., Raussel-Colom, J.A. and De la Calle, C.. 1989. Mécanisme de passage de l'état hydrate à une couche à l'état 'zéro couche' d'une vermiculite-Li de Santa-Olalla. Clay Miner 24: 479493.CrossRefGoogle Scholar
Schramm, L.L. and Kwak, J.C.T.. 1982. Influence of exchangeable cation composition on the size and shape of montmorillonite particles in dilute suspension. Clays Clay Miner 30: 4048.CrossRefGoogle Scholar
Sposito, G. and Prost, R.. 1982. Structure of water adsorbed on smectites. Chem Rev 82: 554573.CrossRefGoogle Scholar
Stul, M.S. and Van Leemput, L.. 1982. The texture of montmorillonites as influenced by the exchangeable inorganic cation and the drying method. I. External surface area related to the stacking units of the aggregates. Surface Technol 16: 89100.CrossRefGoogle Scholar
Suquet, H., De la Calle, C. and Pézerat, H.. 1977. Structure de la saponite de Kozakòv hydratée à 2 couches et saturée avec les cations Na, Ca et Mg. CR Acad Sci Paris, Ser D 284: 14891491.Google Scholar
Suquet, H. and Pézerat, H.. 1987. Parameters influencing layer stacking types in saponite and vermiculite: A review. Clays Clay Miner 35: 353362.CrossRefGoogle Scholar
Tarasevitch, J.I. and Ovcharenko, F.D.. 1975. Adsorption sur des minéraux argileux. Kiev, Russia: Naukova Dumka. 351 p.Google Scholar
Whalley, W.R. and Mullins, C.E.. 1991. Effect of saturating cation on tactoid size distribution in bentonite suspensions. Clay Miner 26: 1117.CrossRefGoogle Scholar
Yvon, J., Baudracco, J., Cases, J.M. and Weiss, J.. 1990. Eléments de minéralogie quantitative en microanalyse des argiles. In: Decarreau, A., editor. Materiaux argileux, structure, propriétés et applications. Paris: SFMCGFA. p 473488.Google Scholar