Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T17:08:40.456Z Has data issue: false hasContentIssue false

Low Temperature Experimental Investigation of the Effect of High pH Naoh Solutions on the Opalinus Shale, Switzerland

Published online by Cambridge University Press:  28 February 2024

J. A. Chermak*
Affiliation:
Mineralogisch-Petrographisches Institut, Universtät Bern, Baltzerstrasse 1, CH - 3012 Bern, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Batch reactor experiments were performed at 150°C, 175°C, and 200°C to determine the effect of high pH NaOH solutions on the mineralogy of the Opalinus shale. In these experiments, the change in solution quench pH at 25°C, solution composition, and mineralogy were monitored as a function of time for up to ≈40 days. Runs were performed in 50 ml titanium hydrothermal reactor vessels. Each reactor was charged with 0.5–5.0 g of the 80–200 mesh size fraction of Opalinus shale, and 25 ml of solution (0.1 and 0.01 M NaOH). The general sequence of reaction products observed under these high pH conditions include first the formation of analcime, followed by vermiculite, and finally Na-rectorite formation.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

References

Alexander, W. R., Dayal, R., Eagleson, K., Eikenberg, J., Hamilton, E., Linklater, C. M., McKinley, I. G., and Tweed, C. J., (in press) A natural analogue of high pH cement pore waters from the Maqarin area of northern Jordan II: Results of predictive geochemical calculations: Journal of Geochemical Exploration.Google Scholar
Allard, B., Persson, G. and Torstenfelt, B., 1985 Actinide solubilities and speciation in a repository environment .Google Scholar
Andersson, K., Allard, B., Bengtsson, M. and Magnusson, B., 1989 Chemical combustion of cement pore solutions Cement and Concrete Research 19 327332 10.1016/0008-8846(89)90022-7.CrossRefGoogle Scholar
Barrer, R. M., 1982 Hydrothermal Chemistry of Zeolites New York Academic Press.Google Scholar
Bath, A. H., Christofi, N., Neal, C., Philp, J. C., Cave, M. R., McKinley, I. G. and Berner, U., 1987 Trace element and microbial studies of alkaline groundwater in Oman, Arabian Gulf: A natural analogue for cement pore-waters .Google Scholar
Barth-Wirsching, U. and Höller, H., 1989 Experimental studies on zeolite formation conditions European Journal of Mineralogy 1 489506 10.1127/ejm/1/4/0489.CrossRefGoogle Scholar
Berner, U., 1990 A thermodynamic description of the evolution of porewater chemistry and uranium speciation during the degradation of cement .Google Scholar
Brady, P. V. and Walther, J. V., 1989 Controls on silicate dissolution rates in neutral and basic pH solutions at 25°C Geochim. Cosmochim. Acta 53 28232830 10.1016/0016-7037(89)90160-9.CrossRefGoogle Scholar
Bredehoeft, J. D., England, A. W., Stewart, D. B., Trask, N. J. and Winograd, I. J., 1978 Geological disposal of high-level radioactive wastes—Earth science perspectives Geological Survey Circular 779.CrossRefGoogle Scholar
Brindley, G. W., 1966 Ethylene glycol and glycerol complexes of smectites and vermiculites Clay Miner. 6 237259 10.1180/claymin.1966.006.4.01.CrossRefGoogle Scholar
Brindley, G. W., Brindley, G. W. and Brown, G., 1980 Quantitative X-ray mineral analysis of clays Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society 10.1180/mono-5.CrossRefGoogle Scholar
Brookins, D. G., 1987 Geochemical Aspects of Radioactive Waste Disposal New York Springer Verlag.Google Scholar
Chapman, N. A. and Flowers, R. H., 1986 Near-field solubility constraints on radionuclide mobilization and their influence on waste package design Phil. Trans. R. Soc. London 319 8395 10.1098/rsta.1986.0087.Google Scholar
Chapman, N. A. and McKinley, I. G., 1987 The Geological Disposal of Nuclear Waste New York John Wiley and Sons.Google Scholar
Chermak, J. A. and Lichtner, P. C., 1991 Low temperature transformations in shales; an experimental and modeling investigation Terra Abstracts .Google Scholar
Chermak, J. A. and Rimstidt, J. D., 1990 The hydrothermal transformation rate of kaolinite to muscovite/illite Geochim. Cosmochim. Acta 54 29792990 10.1016/0016-7037(90)90115-2.CrossRefGoogle Scholar
Donahoe, R. J., Liou, J. G. and Guldman, S., 1984 Synthesis and characterization of zeolites in the system Na2O-K2O-Al2O3-SiO2-H2O Clays & Clay Minerals 32 433443 10.1346/CCMN.1984.0320601.CrossRefGoogle Scholar
Donahoe, R. J. and Liou, J. G., 1985 An experimental study on the process of zeolite formation Geochim. Cosmochim. Acta 49 23492360 10.1016/0016-7037(85)90235-2.CrossRefGoogle Scholar
Eberl, D., 1978 Reaction series for dioctahedral smectites Clays & Clay Minerals 26 327340 10.1346/CCMN.1978.0260503.CrossRefGoogle Scholar
Eberl, D. and Hower, J., 1977 The hydrothermal transformation of sodium and potassium smectite into mixed layer clay Clays & Clay Minerals 25 215227 10.1346/CCMN.1977.0250308.CrossRefGoogle Scholar
Gieskes, J. and Peretsman, G., 1986 Water chemistry procedures aboard Joides Resolution—Some comments Ocean Drilling Program Technical Note No. 5 Texas Texas A&M University, College Station.Google Scholar
Govett, G. J. S., 1961 Critical factors in the colorimetric determination of silica Analytica Chimica Acta 25 6980 10.1016/S0003-2670(01)81519-1.CrossRefGoogle Scholar
Hawkins, D. B., 1981 Kinetics of glass dissolution and zeolite formation under hydrothermal conditions Clays & Clay Minerals 29 331340 10.1346/CCMN.1981.0290503.CrossRefGoogle Scholar
Haworth, A., Sharland, S. M. and Tweed, C. J., 1989 Modelling of the degradation of cement in a nuclear waste repository Material Research Society Symposium Proceedings 127 447454 10.1557/PROC-127-447.CrossRefGoogle Scholar
Hay, R. L., Sand, L. B. and Mumpton, F. A., 1978 Geologic occurrence of zeolites Natural Zeolites New York Pergamon Press 135143.Google Scholar
Hay, R. L., 1986 Geologic occurrence of zeolites and some associated minerals Pure and Applied Chemistry 58 13391342 10.1351/pac198658101339.CrossRefGoogle Scholar
Hoffman, D. C. and Choppin, G. R., 1986 Chemistry related to isolation of high-level nuclear waste Journal of Chemical Education 63 10591064 10.1021/ed063p1059.CrossRefGoogle Scholar
Hollister, C. D., Anderson, D. R. and Heath, G. R., 1981 Subseabed disposal of nuclear wastes Science 213 13211326 10.1126/science.213.4514.1321.CrossRefGoogle ScholarPubMed
Hower, J., Eslinger, E. V., Hower, M. and Perry, E. A., 1976 Mechanism of burial metamorphism of argillaceous sediments: I. Mineralogical and chemical evidence Geological Society of America Bulletin 87 725737 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Jefferies, N. L., Tweed, C. J. and Wisbey, S. J., 1988 The effects of changes in pH within a clay surrounding a cementitious repository Material Research Society Symposium Proceedings 112 4352 10.1557/PROC-112-43.CrossRefGoogle Scholar
Karlsson, L. G., Höglund, L. O. and Pers, K., 1986 Nuclide release from the near-field of a L/ILW repository .Google Scholar
Khoury, H. N., Salameh, E. and Abdul-Jaber, Q., 1985 Characteristics of an unusual highly alkaline water from the Maqarin area, Northern Jordan Journal of Hydrology 81 7991 10.1016/0022-1694(85)90168-4.CrossRefGoogle Scholar
Khoury, H. N., Salameh, E., Clark, I. D., Fritz, P., Bajjali, W., Milodowski, A. E., Cave, M. R., and Alexander, W. R., (in press) A natural analogue of high pH cement-pore waters from the Maqarin area of northern Jordan I: Introduction to the site: Journal of Geochemical Exploration.Google Scholar
Kodama, H., 1966 The nature of the component layers of rectorite Amer. Mineral. 51 10351055.Google Scholar
Krauskopf, K. B., 1986 Aqueous geochemistry of radioactive waste disposal Applied Geochemistry 1 1523 10.1016/0883-2927(86)90034-X.CrossRefGoogle Scholar
Krauskopf, K. B., 1988 Geology of high-level radioactive waste disposal Annual Reviews of Earth and Planetary Sciences 16 173200 10.1146/annurev.ea.16.050188.001133.CrossRefGoogle Scholar
Lichtner, P. C., 1985 Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems Geochim. Cosmochim. Acta 49 779800 10.1016/0016-7037(85)90172-3.CrossRefGoogle Scholar
Lichtner, P. C., 1988 The quasi-stationary state approximation to coupled mass transport and fluid rock interaction in a porous media Geochim. Cosmochim. Acta 52 143165 10.1016/0016-7037(88)90063-4.CrossRefGoogle Scholar
Lunden, I. and Andersson, K., 1989 Modeling of the mixing of cement pore water groundwater using the PHREEQE code Materials Research Society Symposium Proceedings 127 949956.Google Scholar
Matsuda, T. and Henmi, K., 1983 Syntheses and properties of regularly interstratified 25 Å minerals Clay Science 6 5166.Google Scholar
McCulloch, C. E., Angus, M. J., Crawford, R. W., Rahman, A. A. and Glaser, F. P., 1985 Cements in radioactive waste disposal: Some mineralogical considerations Mineralogical Magazine 49 211221 10.1180/minmag.1985.049.351.08.CrossRefGoogle Scholar
Merck AG, E., 1966 Organische Reagenzien für die Anorganische Analyse Weinheim, Germany Verlag Chemie GMBH.Google Scholar
Mohnot, S. M., Bae, J. H. and Foley, W. L., 1987 A study of mineral/alkali reactions SPE Reservoir Engineering 653663.CrossRefGoogle Scholar
Moncure, G. K., Surdam, R. C. and McKague, H. L., 1981 Zeolite diagenesis below Pahute Mesa, Nevada test site Clays & Clay Minerals 29 385396 10.1346/CCMN.1981.0290508.CrossRefGoogle Scholar
Moore, D. M. and Reynolds, R. C. Jr., 1989 X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press.Google Scholar
Novosad, Z. and Novosad, J., 1984 Determination of alkalinity losses resulting from hydrogen ion exchange in alkaline flooding SPE of AIME 4952.CrossRefGoogle Scholar
Pawloski, G. A., 1985 Quantitative determination of mineral content of geologic samples by X-ray diffraction Amer. Mineral. 70 663667.Google Scholar
Pevear, D. R., Williams, V. E. and Mustoe, G. E., 1980 Kaolinite, smectite, and K-rectorite in bentonites: Relation to coal rank at Tulameen, British Columbia Clays & Clay Minerals 28 241254 10.1346/CCMN.1980.0280401.CrossRefGoogle Scholar
Reardon, E. J., 1990 An ion interaction model for the determination of chemical equilibrium in cement/water systems Cement and Concrete Research 20 175192 10.1016/0008-8846(90)90070-E.CrossRefGoogle Scholar
Reynolds, R. C. and Reynolds, R. C., 1985 Newmod© A Computer Program for the Calculation of Basal Diffraction Intensities of Mixed-layer Clay Minerals .Google Scholar
Savage, D., Bateman, K., Hill, P., Hughes, C., Mildowski, A., Pearce, J., Rae, E. and Rochelle, C. A., 1991 Rate and mechanism of the reaction of silicates with cement pore fluids Chemistry and Migration Behavior of Actinides and Fission Products in the Geosphere Spain Jerez de la Frontera.Google Scholar
Snyder, R. L., Bish, D. L., Bish, D. L. and Post, J. E., 1989 Quantitative analysis Modern Powder Diffraction, Reviews in Mineralogy, Vol. 20 Washington, D.C. Mineralogical Society of America 101142 10.1515/9781501509018-008.CrossRefGoogle Scholar
Van Aardt, J H P and Visser, S., 1977 Calcium hydroxide attack on feldspars and clays: Possible relevance to cement-aggregate reactions Cement and Concrete Research 7 643648 10.1016/0008-8846(77)90046-1.CrossRefGoogle Scholar
Varian, Analytical methods for flame spectroscopy Varian Techtron Pty. Ltd. 1979 Australia Springvale.Google Scholar
Velde, B., 1985 Clay minerals, a physico-chemical explanation of their occurrence Developments in Sedimentology, Vol. 40 New York Elsevier.Google Scholar
Vieillard, P. and Rassineux, F., 1992 Thermodynamic and geochemical modelling of the alteration of two cement matrices Applied Geochemistry 1 125136 10.1016/S0883-2927(09)80068-1.CrossRefGoogle Scholar
Whitney, G. and Northrop, H. R., 1988 Experimental investigation of the smectite to illite reaction: Dual reaction mechanisms and oxygen-isotope systematics Amer. Mineral. 73 7790.Google Scholar