Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T14:45:42.028Z Has data issue: false hasContentIssue false

Light Scattering Study on Sol-Gel Transformation of SiO2 Colloid at Extremely High Concentrations

Published online by Cambridge University Press:  28 February 2024

Yingnian Xu
Affiliation:
Department of Chemistry, The University of British Columbia, Vancouver, B.C. V6T 1Z1, Canada
Yoshikata Koga
Affiliation:
Department of Chemistry, The University of British Columbia, Vancouver, B.C. V6T 1Z1, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ludox SiO2 sols with a reasonably uniform size of 12 nm and in the high concentration of 10 to 40 wt% were transformed to gels by lowering the pH. The process from sol to gel, followed by light scattering, did not show a sign of fractal growth within the length scale of observation (>0 nm). Rather, a density fluctuation due to a dynamic (non-equilibrium) disorder was apparent. Together with the results of viscosity measurements, it was concluded that the process consists of 3 stages: 1) A dynamic (non-equilibrium) density fluctuation grows rapidly. 2) Such density fluctuation acquires some order. 3) The entire bulk loses fluidity and becomes a macroscopic gel.

Type
Research Article
Copyright
Copyright © 1998, The Clay Minerals Society

References

Allen, L.H. and Matijevic, E., 1969 Stability of colloidal silica. I. Effect of simple electrolytes J Colloid Interface Sci 31 287296 10.1016/0021-9797(69)90172-6.CrossRefGoogle Scholar
Aubert, C. and Cannell, D.S., 1986 Restructuring of colloidal silica aggregates Phys Rev Lett 56 738742 10.1103/PhysRevLett.56.738.CrossRefGoogle ScholarPubMed
Carpineti, M. Giglio, M. and Degiorgio, V., 1995 Mass conservation and autocorrelation effects in the colloidal aggregation of dense solutions Phys Rev E 51 590596 10.1103/PhysRevE.51.590.CrossRefGoogle Scholar
Dietler, G. Aubert, C. Cannell, D.S. and Wiltzius, P., 1986 Gelation of silica Phys Rev Lett 56 31173120 10.1103/PhysRevLett.57.3117.CrossRefGoogle Scholar
Guinier, A. and Fournet, G., 1955 Small angle scattering of X-rays New York J Wiley.Google Scholar
Hench, L.L. and West, J.K., 1990 The sol-gel process Chem Rev 90 3372 10.1021/cr00099a003.CrossRefGoogle Scholar
Her, R.K., 1979 The chemistry of silica New York J Wiley 366372.Google Scholar
Martin, J.E., 1987 Slow aggregation of colloidal silica Phys Rev A 36 34153426 10.1103/PhysRevA.36.3415.CrossRefGoogle ScholarPubMed
Martin, J.E. and Adolf, D., 1991 The sol-gel transition in chemical gels Annual Rev Phys Chem 42 311339 10.1146/annurev.pc.42.100191.001523.CrossRefGoogle Scholar
Martin, J.E. and Keefer, K.D., 1986 Scattering below the sol-gel transition Phys Rev A 34 49884992 10.1103/PhysRevA.34.4988.CrossRefGoogle ScholarPubMed
Martin, J.E. and Wilcoxon, J.P., 1989 Spatial correlation and growth in dilute gels Phys Rev A 39 252258 10.1103/PhysRevA.39.252.CrossRefGoogle ScholarPubMed
Martin, J.E. Wilcoxon, J. and Adolf, D., 1987 Critical exponents for the sol-gel transition Phys Rev A 36 18031810 10.1103/PhysRevA.36.1803.CrossRefGoogle ScholarPubMed
Martin, J.E. Wilcoxon, J.P. and Odnik, J., 1991 Decay of density fluctuations in gels Phys Rev A 43 858872 10.1103/PhysRevA.43.858.CrossRefGoogle ScholarPubMed
Martin, J.E. Wilcoxon, J.P. Schaefer, D. and Odnik, J., 1990 Fast aggregation of colloidal silica Phys Rev A 41 43794391 10.1103/PhysRevA.41.4379.CrossRefGoogle ScholarPubMed
Matsuoka, H. Murai, H. and Ise, N., 1988 “Ordered” structure in colloidal silica particle suspensions as studied by small angle X-ray scattering Phys Rev B 37 13681375 10.1103/PhysRevB.37.1368.CrossRefGoogle ScholarPubMed
Matsuoka, H. Tanaka, H. Hashimoto, T. and Ise, N., 1987 Elastic scattering from cubic lattice with paracrystalline distortion Phys Rev B 36 17541765 10.1103/PhysRevB.36.1754.CrossRefGoogle ScholarPubMed
Pike, E.R. Pomeroy, W.R.M. and Vaughan, I.M., 1975 Measurement of Rayleigh ratio for several pure liquids using a laser and monitored photon counting J Chem Phys 62 31883192 10.1063/1.430867.CrossRefGoogle Scholar
Ratje, J. and Ruland, W., 1976 Density fluctuations in amorphous and semicrystalline polymers Colloid Polym Sci 254 358370 10.1007/BF01384035.CrossRefGoogle Scholar
Roe, R.-J., 1983 Density fluctuation in a “theorist’s ideal glass” J Chem Phys 79 936938 10.1063/1.445870.CrossRefGoogle Scholar
Roe, R.-J. and Curro, J.J., 1983 Small angle X-ray scattering study of density fluctuation in polystyrene annealed below the glass transition temperature Macromol 16 428434 10.1021/ma00237a018.CrossRefGoogle Scholar
Schaefer, D.W. and Keefer, K.D., 1986 Structure of random porous materials: Solica aerogel Phys Rev Lett 56 21992202 10.1103/PhysRevLett.56.2199.CrossRefGoogle ScholarPubMed
Schaefer, D. Martin, J.E. Cannell, D. and Wiltzins, P., 1984 Fractal geometry of colloidal aggregates Phys Rev Lett 52 23712374 10.1103/PhysRevLett.52.2371.CrossRefGoogle Scholar
Sorensen, C.M. Mockler, R.C. and O’Sullivan, W.J., 1978 Multiple scattering from a system of brownian particles Phys Rev A 17 20302035 10.1103/PhysRevA.17.2030.CrossRefGoogle Scholar
Spanhel, L. and Anderson, M.A., 1991 Semiconductor clusters in the sol-gel process: Quantized aggregation, gelation and crystal growth in concentrated ZnO colloids J Am Chem Soc 113 28262833 10.1021/ja00008a004.CrossRefGoogle Scholar
Stanley, H.E., 1971 Introduction to phase transitions and critical phenomena Oxford Oxford Univ Pr 100106.Google Scholar
Tanaka, T., 1978 Collapse of gels and the critical endpoint Phys Rev Lett 40 820823 10.1103/PhysRevLett.40.820.CrossRefGoogle Scholar
Winter, R. Hua, D.W. Song, X. Martuliu, W. and Jonas, J., 1990 Structure and dynamical properties of the sol-gel transition J Phys Chem 94 27062713 10.1021/j100369a086.CrossRefGoogle Scholar
Xu, Y. Hiew, P.L. Klippenstein, M.A. and Koga, Y., 1996 Study of a commercial SiO2 sol and gel by small angle X-ray scattering: Effect of sample thickness and interpretation by means of Smoulchowski scheme Clays Clay Miner 44 197213 10.1346/CCMN.1996.0440205.CrossRefGoogle Scholar
Zhang, Y. Raman, N. Bailey, J.K. Brinker, C.J. and Crooks, R.M., 1992 A new route for preparation of nanometer-scale semiconductor particles that exhibit quantum optical behaviour J Phys Chem 96 90989100 10.1021/j100202a004.CrossRefGoogle Scholar